REBOOT | Resource efficient bio-chemical production and waste treatment

Summary
The REBOOT project will create a disruptive wet waste valorisation technology where valuable resources are re-used rather than disposed of while tackling two urgent environmental challenges: nutrient circularity and climate change. Wastewater treatment sludge and manure treatment technologies are currently not satisfactory and there is no solution to efficiently re-use the resources it contains: phosphorous and carbon.
The aim of REBOOT is to completely recover phosphorous from wastes while generating carbon neutral transportation fuels and a carbon sink in the form of carbon materials. The project will employ a frontier technology called hydrothermal liquefaction (HTL) which uses high temperature and pressure to produce a liquid product similar to petroleum termed bio-crude. This will be used for a range of innovative applications such as renewable aviation fuel, functionalized carbon materials and bio-bitumen.
The possibility of complete phosphorous recovery in HTL is a completely new concept, previously thought impossible as only continuous HTL reactors can theoretically achieve this. The complex hydrothermal chemistry of salts can only be exploited on such advanced reactors that are currently beyond state-of-the-art. The specific objectives of REBOOT are: (1) mechanistic understanding of salt behaviour in multi-phase hydrothermal systems with the aim of full recovery. (2) Develop tailored strategies for in-situ jet fuel synthesis. (3) Establish microbial electrolysis cells for in-situ hydrogen production and nutrient recovery.
REBOOT will be carried out on pilot continuous reactors, where the challenging physical conditions can be explored, exploited and new engineering solutions developed. If REBOOT is successful it will enable society to tackle existing waste problems while recovering nutrients and producing renewable materials, replacing fossil derived ones; representing a revolutionary solution to wet waste management in the emerging circular bio-economy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/849841
Start date: 01-01-2020
End date: 31-12-2024
Total budget - Public funding: 1 494 622,00 Euro - 1 494 622,00 Euro
Cordis data

Original description

The REBOOT project will create a disruptive wet waste valorisation technology where valuable resources are re-used rather than disposed of while tackling two urgent environmental challenges: nutrient circularity and climate change. Wastewater treatment sludge and manure treatment technologies are currently not satisfactory and there is no solution to efficiently re-use the resources it contains: phosphorous and carbon.
The aim of REBOOT is to completely recover phosphorous from wastes while generating carbon neutral transportation fuels and a carbon sink in the form of carbon materials. The project will employ a frontier technology called hydrothermal liquefaction (HTL) which uses high temperature and pressure to produce a liquid product similar to petroleum termed bio-crude. This will be used for a range of innovative applications such as renewable aviation fuel, functionalized carbon materials and bio-bitumen.
The possibility of complete phosphorous recovery in HTL is a completely new concept, previously thought impossible as only continuous HTL reactors can theoretically achieve this. The complex hydrothermal chemistry of salts can only be exploited on such advanced reactors that are currently beyond state-of-the-art. The specific objectives of REBOOT are: (1) mechanistic understanding of salt behaviour in multi-phase hydrothermal systems with the aim of full recovery. (2) Develop tailored strategies for in-situ jet fuel synthesis. (3) Establish microbial electrolysis cells for in-situ hydrogen production and nutrient recovery.
REBOOT will be carried out on pilot continuous reactors, where the challenging physical conditions can be explored, exploited and new engineering solutions developed. If REBOOT is successful it will enable society to tackle existing waste problems while recovering nutrients and producing renewable materials, replacing fossil derived ones; representing a revolutionary solution to wet waste management in the emerging circular bio-economy.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG