RCSB | Regulation of cell size and shape in bacteria

Summary
Proper cell size and shape are important for many biological functions, such as metabolism, signaling, motility, and development. This proposal addresses the fundamental question of how bacteria control their morphology and their cell volume with high precision, using the rod-like bacterium Escherichia coli as a primary model system. Bacterial cell shape is physically determined during growth by the enzymatic expansion and remodeling of the peptidoglycan (PG) cell wall, a partially ordered elastic meshwork that is the pressure-bearing component of the cell envelope. In this proposal we will address two fundamental questions:
i) How do cells physically build and remodel their macroscopically ordered cell wall to reproducibly acquire cell shape? We will thus image the dynamics of the PG cell wall and of the enzymatic and structural proteins involved in its expansion, using high-precision video fluorescence microscopy and spectroscopy. From spatio-temporal correlations measured in steady-state experiments and after physical, chemical, or biological perturbations, we will deduce how different physical cues affect and regulate cell-wall expansion.
ii) How do bacteria regulate their own cell volume, and what role does intracellular crowding play in this context? The intracellular mass density of bacteria is remarkably well conserved during growth, suggesting that cell size is regulated to maintain a constant level of intracellular crowding. Crowding has been deemed important for the regulation of volume in slowly growing mammalian cells before. Here, we will study the role of intracellular crowding, osmotic pressure, and other physiological quantities on cell-volume regulation in bacteria. Furthermore, we will use phenotypic screening and genetic approaches to identify the pathways involved in cell-volume control.
Together, this proposal addresses a fundamental question of self-organization in biology using combined approaches from physics and biology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/679980
Start date: 01-04-2016
End date: 31-01-2021
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Proper cell size and shape are important for many biological functions, such as metabolism, signaling, motility, and development. This proposal addresses the fundamental question of how bacteria control their morphology and their cell volume with high precision, using the rod-like bacterium Escherichia coli as a primary model system. Bacterial cell shape is physically determined during growth by the enzymatic expansion and remodeling of the peptidoglycan (PG) cell wall, a partially ordered elastic meshwork that is the pressure-bearing component of the cell envelope. In this proposal we will address two fundamental questions:
i) How do cells physically build and remodel their macroscopically ordered cell wall to reproducibly acquire cell shape? We will thus image the dynamics of the PG cell wall and of the enzymatic and structural proteins involved in its expansion, using high-precision video fluorescence microscopy and spectroscopy. From spatio-temporal correlations measured in steady-state experiments and after physical, chemical, or biological perturbations, we will deduce how different physical cues affect and regulate cell-wall expansion.
ii) How do bacteria regulate their own cell volume, and what role does intracellular crowding play in this context? The intracellular mass density of bacteria is remarkably well conserved during growth, suggesting that cell size is regulated to maintain a constant level of intracellular crowding. Crowding has been deemed important for the regulation of volume in slowly growing mammalian cells before. Here, we will study the role of intracellular crowding, osmotic pressure, and other physiological quantities on cell-volume regulation in bacteria. Furthermore, we will use phenotypic screening and genetic approaches to identify the pathways involved in cell-volume control.
Together, this proposal addresses a fundamental question of self-organization in biology using combined approaches from physics and biology.

Status

CLOSED

Call topic

ERC-StG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-STG
ERC-StG-2015 ERC Starting Grant