FRICatANIONS | Frontiers in Catalytic Anion-Binding Chemistry

Summary
Chemical transformations comprise the polarization of the reacting species. As a consequence, partially or fully charged reagents and intermediates are omnipresent in chemistry. Although anion-binding processes are well-known for their crucial role in molecular recognition, this type of phenomenon has only recently been utilized for catalysis. Since catalytic reactions are of utmost relevance to construct valuable chemicals and materials, this mode of catalytic chemical activation might be the key for the future design of original and more efficient synthetic transformations. However, the effects of anions in catalytic processes are still largely unknown.
Aiming at providing a novel general synthetic toolbox, in this project I propose several anion-binding activation concepts to solve current challenging catalytic synthetic problems. To achieve this goal, structurally different chiral anion-binding catalysts will be developed and incorporated into the existing limited palette of catalyst library. Furthermore, I propose a significant expansion of the application scope of anion-binding catalysis based on the activation and modulation of anionic nucleophiles and oxidants to develop organocatalytic reactions such as halogenations and oxidations, including the asymmetric functionalization of C-H bonds. In addition, anion-binding processes will be used to facilitate key steps in cross-coupling reactions such as the transmetallation, as well as the photoactivity modulation of readily available photosensitizers and the introduction of asymmetric photocatalysis involving radical-anions.
The proposed groundbreaking approaches will revolutionize not only anion-binding catalysis but also all the scientific areas relying on catalytic synthetic methods. Thus, the results derived from this project will have a tremendous impact in diverse fields such as catalysis, organic synthesis and material sciences, as well as in economical, environmental and industrial issues.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/724695
Start date: 01-06-2017
End date: 31-05-2023
Total budget - Public funding: 1 997 762,50 Euro - 1 997 762,00 Euro
Cordis data

Original description

Chemical transformations comprise the polarization of the reacting species. As a consequence, partially or fully charged reagents and intermediates are omnipresent in chemistry. Although anion-binding processes are well-known for their crucial role in molecular recognition, this type of phenomenon has only recently been utilized for catalysis. Since catalytic reactions are of utmost relevance to construct valuable chemicals and materials, this mode of catalytic chemical activation might be the key for the future design of original and more efficient synthetic transformations. However, the effects of anions in catalytic processes are still largely unknown.
Aiming at providing a novel general synthetic toolbox, in this project I propose several anion-binding activation concepts to solve current challenging catalytic synthetic problems. To achieve this goal, structurally different chiral anion-binding catalysts will be developed and incorporated into the existing limited palette of catalyst library. Furthermore, I propose a significant expansion of the application scope of anion-binding catalysis based on the activation and modulation of anionic nucleophiles and oxidants to develop organocatalytic reactions such as halogenations and oxidations, including the asymmetric functionalization of C-H bonds. In addition, anion-binding processes will be used to facilitate key steps in cross-coupling reactions such as the transmetallation, as well as the photoactivity modulation of readily available photosensitizers and the introduction of asymmetric photocatalysis involving radical-anions.
The proposed groundbreaking approaches will revolutionize not only anion-binding catalysis but also all the scientific areas relying on catalytic synthetic methods. Thus, the results derived from this project will have a tremendous impact in diverse fields such as catalysis, organic synthesis and material sciences, as well as in economical, environmental and industrial issues.

Status

CLOSED

Call topic

ERC-2016-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2016
ERC-2016-COG