MPCPRO | Better MPC Protocols in Theory and in Practice

Summary
Multiparty computation (MPC) is a cryptographic technique allowing us to build distributed computer systems for handling confidential data. We can control exactly what information is released from the system, and privacy of the input data is maintained, even if an adversary breaks into several of the machines in the system. The efficiency of MPC protocols has been significantly improved in recent years. There are countless applications and the techniques are just now entering the commercial domain. However, the theory of the area has in several respects failed to keep up with this development, and we are still very far from being able to apply MPC to large-scale applications. In this project, we propose that state of the art for MPC protocols can be dramatically advanced by

1) Developing a completely new theory for the performance of MPC protocols based on a more detailed model that better reflects what happens when protocols are executed on real platforms.
2) Use the new theory to guide development and implementation of new MPC protocols that will perform much better in practice.
3) Explore the limits of what we can achieve by showing new lower bounds for MPC protocols, attacking a number of long-standing open problems. This will enable us to focus our attention to where improvements are possible.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/669255
Start date: 01-10-2015
End date: 31-03-2021
Total budget - Public funding: 2 421 995,00 Euro - 2 421 995,00 Euro
Cordis data

Original description

Multiparty computation (MPC) is a cryptographic technique allowing us to build distributed computer systems for handling confidential data. We can control exactly what information is released from the system, and privacy of the input data is maintained, even if an adversary breaks into several of the machines in the system. The efficiency of MPC protocols has been significantly improved in recent years. There are countless applications and the techniques are just now entering the commercial domain. However, the theory of the area has in several respects failed to keep up with this development, and we are still very far from being able to apply MPC to large-scale applications. In this project, we propose that state of the art for MPC protocols can be dramatically advanced by

1) Developing a completely new theory for the performance of MPC protocols based on a more detailed model that better reflects what happens when protocols are executed on real platforms.
2) Use the new theory to guide development and implementation of new MPC protocols that will perform much better in practice.
3) Explore the limits of what we can achieve by showing new lower bounds for MPC protocols, attacking a number of long-standing open problems. This will enable us to focus our attention to where improvements are possible.

Status

CLOSED

Call topic

ERC-ADG-2014

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2014
ERC-2014-ADG
ERC-ADG-2014 ERC Advanced Grant