PEQEM | Photonics for engineered quantum enhanced measurement

Summary
Advances in measurement always lead to dramatic advances in science and in technology. Our society is now heavily dependent on the sensors that permeate environmental monitoring, security, healthcare and commerce. This is quantified by the global sensing market worth rising from $110 billion in 2015 to $124 billion in 2016, and is predicted to continue to rise to $240 billion by 2022. Now, our rapidly growing understanding of how to control quantum systems vastly expands both the potential performance and application for measurement and sensing using quantum-enhanced techniques. But these techniques will only efficiently find disruptive use once they are engineered for robustness, deliver desired operational parameters and are shown to work in a platform that can be mass-produced.

This project adopts an engineering approach to the disciplines of photonic quantum enhanced sensing and squeezed light quantum optics. We will develop integrated photonics that are tailored to enable miniature, deployable and ultimately low cost sensors that exceed the state of the art through (i) exploitation of the quantum mechanics of light and by (ii) developing the requisite high performance of components in an integrated photonics platform. The methodology is to combine quantum optics of Kerr-nonlinear materials that generate squeezed light and quantum state detection with photonic device engineering. We will benchmark device performance using quantum metrology techniques. By the end of this project, we will have developed all-integrated squeezed light generation and detection technology, that provides enhanced sensors for absorption and phase measurements beyond the shot noise limit --- the hard limit that bounds performance of state of the art “classical” sensors. Applications include next generation quantum metrology experiments, measurement of photo-sensitive samples, precise characterization of photonic components and trace gas detection.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/803665
Start date: 01-01-2019
End date: 30-06-2025
Total budget - Public funding: 1 497 890,00 Euro - 1 497 890,00 Euro
Cordis data

Original description

Advances in measurement always lead to dramatic advances in science and in technology. Our society is now heavily dependent on the sensors that permeate environmental monitoring, security, healthcare and commerce. This is quantified by the global sensing market worth rising from $110 billion in 2015 to $124 billion in 2016, and is predicted to continue to rise to $240 billion by 2022. Now, our rapidly growing understanding of how to control quantum systems vastly expands both the potential performance and application for measurement and sensing using quantum-enhanced techniques. But these techniques will only efficiently find disruptive use once they are engineered for robustness, deliver desired operational parameters and are shown to work in a platform that can be mass-produced.

This project adopts an engineering approach to the disciplines of photonic quantum enhanced sensing and squeezed light quantum optics. We will develop integrated photonics that are tailored to enable miniature, deployable and ultimately low cost sensors that exceed the state of the art through (i) exploitation of the quantum mechanics of light and by (ii) developing the requisite high performance of components in an integrated photonics platform. The methodology is to combine quantum optics of Kerr-nonlinear materials that generate squeezed light and quantum state detection with photonic device engineering. We will benchmark device performance using quantum metrology techniques. By the end of this project, we will have developed all-integrated squeezed light generation and detection technology, that provides enhanced sensors for absorption and phase measurements beyond the shot noise limit --- the hard limit that bounds performance of state of the art “classical” sensors. Applications include next generation quantum metrology experiments, measurement of photo-sensitive samples, precise characterization of photonic components and trace gas detection.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG