RARITY | RAtional design of canceR ImmunoTherapY: one size does not fit all

Summary
Checkpoint blockade immunotherapies have revolutionized cancer treatment. However, this immunotherapy only benefits a minority of patients (< 15%), mainly those diagnosed with cancers having many mutations. Furthermore, checkpoint blockade therapy does not selectively activate cancer-reactive T cells.
RARITY responds to these shortcomings, aiming to provide innovative solutions for the development of effective immunotherapies for patients who do not benefit from current treatments. The ground-breaking preliminary data included in this application demonstrates that cancer-reactive T cells can be naturally present in so-called non-immunogenic cancers and that they acquire distinctive phenotypes. RARITY will apply state-of-the-art technologies to fingerprint these phenotypes. This will allow the isolation of cancer-reactive T cells from tumour tissues and their employment as highly-effective therapies. Therapeutic vaccination with cancer antigens can also be used to induce T cell responses in patients where natural activation of cancer-specific T cells is not detectable. However, the applicability of vaccination is compromised by the lack of specific targets, particularly in malignancies with few mutations. RARITY will address this problem by deploying a novel class of cancer antigens. An unprecedented screening of non-exomic genomic regions will be done to detect unannotated proteins that arise from de novo transcription and translation events. These proteins can then be targeted by personalized immunotherapies. Finally, thought-provoking findings included in RARITY suggest that immune cell subsets other than T cells play a major role in anti-tumour immune responses. These subsets need to be fully inventoried and categorised so that complementary strategies to T cell immunotherapies can be developed. RARITY will do so by conducting multidimensional analysis of cancer microenvironments using imaging mass cytometry and ex vivo modulation of immune responses.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/852832
Start date: 01-12-2019
End date: 30-11-2024
Total budget - Public funding: 1 499 795,00 Euro - 1 499 795,00 Euro
Cordis data

Original description

Checkpoint blockade immunotherapies have revolutionized cancer treatment. However, this immunotherapy only benefits a minority of patients (< 15%), mainly those diagnosed with cancers having many mutations. Furthermore, checkpoint blockade therapy does not selectively activate cancer-reactive T cells.
RARITY responds to these shortcomings, aiming to provide innovative solutions for the development of effective immunotherapies for patients who do not benefit from current treatments. The ground-breaking preliminary data included in this application demonstrates that cancer-reactive T cells can be naturally present in so-called non-immunogenic cancers and that they acquire distinctive phenotypes. RARITY will apply state-of-the-art technologies to fingerprint these phenotypes. This will allow the isolation of cancer-reactive T cells from tumour tissues and their employment as highly-effective therapies. Therapeutic vaccination with cancer antigens can also be used to induce T cell responses in patients where natural activation of cancer-specific T cells is not detectable. However, the applicability of vaccination is compromised by the lack of specific targets, particularly in malignancies with few mutations. RARITY will address this problem by deploying a novel class of cancer antigens. An unprecedented screening of non-exomic genomic regions will be done to detect unannotated proteins that arise from de novo transcription and translation events. These proteins can then be targeted by personalized immunotherapies. Finally, thought-provoking findings included in RARITY suggest that immune cell subsets other than T cells play a major role in anti-tumour immune responses. These subsets need to be fully inventoried and categorised so that complementary strategies to T cell immunotherapies can be developed. RARITY will do so by conducting multidimensional analysis of cancer microenvironments using imaging mass cytometry and ex vivo modulation of immune responses.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG