NANO4LIFE | High-throughput 4D imaging for nanoscale cellular studies

Summary
Fluorescence microscopy is an invaluable tool for exploring the structure and function of biological processes. It provides high specificity and contrast for the observation of cellular components tagged with fluorescent molecules in a minimally invasive fashion, allowing the study of live specimens. Furthermore, the development of super resolution (SR) fluorescence microscopy has unlocked the access to spatial resolutions beyond the diffraction limit of visible light (~250nm), fuelling the discovery of new biological structures and dynamics.
Nevertheless, achieving resolutions below ~10nm is challenged by multiple trade-offs between spatial and temporal resolutions, depth of observation and photo toxicity, making it difficult or impossible to obtain a molecular resolution. Additionally, axial resolutions are inevitably poorer than lateral ones, unless utilizing a complex multi-objective lens approach.
I recently developed MINFLUX, a localization technique that merges concepts of SR with information theory. It achieves isotropic nanometer resolution in three dimensions with a single objective lens and has unrivaled spatio temporal resolution.
However, a platform that enables these capabilities in a high-throughput manner for entire cells and tissue has not yet been developed. I aim to fill this technological gap; with my background and experience, I am in a unique position to assure the success of this project and establish these technologies in the scientific community. The performance of fluorescence imaging and tracking will progress orders of magnitude in the years to come, signaling yet another revolution for optical nanoscopy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/853348
Start date: 01-01-2020
End date: 31-12-2025
Total budget - Public funding: 1 778 325,00 Euro - 1 778 325,00 Euro
Cordis data

Original description

Fluorescence microscopy is an invaluable tool for exploring the structure and function of biological processes. It provides high specificity and contrast for the observation of cellular components tagged with fluorescent molecules in a minimally invasive fashion, allowing the study of live specimens. Furthermore, the development of super resolution (SR) fluorescence microscopy has unlocked the access to spatial resolutions beyond the diffraction limit of visible light (~250nm), fuelling the discovery of new biological structures and dynamics.
Nevertheless, achieving resolutions below ~10nm is challenged by multiple trade-offs between spatial and temporal resolutions, depth of observation and photo toxicity, making it difficult or impossible to obtain a molecular resolution. Additionally, axial resolutions are inevitably poorer than lateral ones, unless utilizing a complex multi-objective lens approach.
I recently developed MINFLUX, a localization technique that merges concepts of SR with information theory. It achieves isotropic nanometer resolution in three dimensions with a single objective lens and has unrivaled spatio temporal resolution.
However, a platform that enables these capabilities in a high-throughput manner for entire cells and tissue has not yet been developed. I aim to fill this technological gap; with my background and experience, I am in a unique position to assure the success of this project and establish these technologies in the scientific community. The performance of fluorescence imaging and tracking will progress orders of magnitude in the years to come, signaling yet another revolution for optical nanoscopy.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG