Summary
Hepatitis B virus (HBV) infections remain a major public health issue worldwide. Over 350 -400 million people are chronically infected by HBV, and about 1 million people die each year from the complications of this infection (cirrhosis and hepatocellular carcinoma) with a consequent hefty economic impact on national health systems. This led the World Health Organization to recognise HBV infection as a key priority and adopt the global health sector strategy to eliminate viral hepatitis, with a target of reducing new infections by 90% and mortality by 65% by 2030.
The risk of developing a chronic infection in healthy adults is due to a weaker, dysfunctional and narrowly focused CD8+ T cell response. Since the mechanisms underlying HBV persistence are not fully elucidated, current treatments (antiviral drugs and Interferon) aim to reduce the development of liver disease, while a definitive treatment for curing this infection is not yet available on the market.
Within the ERC Consolidator Grant 725038 “FATE”, we recently characterized the mechanisms behind the ineffective CD8+ T cell response towards HBV, demonstrating the potential efficacy of interleukin-2 (IL-2) – a cytokine – to reactivate it, thus achieving antiviral activity. This discovery, jointly with our proprietary third-generation, self-inactivating lentiviral vectors (LVs) that allow selective hepatocellular expression of IL-2, pave the way to single-dose gene therapy-based approach, a potential functional cure against chronic hepatitis B.
2LIVEr project intends to optimize and further validate our novel therapeutic approach from both a technical and commercial standpoint, moving from TRL3 to TRL4, thus fastening the roadmap towards the market.
The risk of developing a chronic infection in healthy adults is due to a weaker, dysfunctional and narrowly focused CD8+ T cell response. Since the mechanisms underlying HBV persistence are not fully elucidated, current treatments (antiviral drugs and Interferon) aim to reduce the development of liver disease, while a definitive treatment for curing this infection is not yet available on the market.
Within the ERC Consolidator Grant 725038 “FATE”, we recently characterized the mechanisms behind the ineffective CD8+ T cell response towards HBV, demonstrating the potential efficacy of interleukin-2 (IL-2) – a cytokine – to reactivate it, thus achieving antiviral activity. This discovery, jointly with our proprietary third-generation, self-inactivating lentiviral vectors (LVs) that allow selective hepatocellular expression of IL-2, pave the way to single-dose gene therapy-based approach, a potential functional cure against chronic hepatitis B.
2LIVEr project intends to optimize and further validate our novel therapeutic approach from both a technical and commercial standpoint, moving from TRL3 to TRL4, thus fastening the roadmap towards the market.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/957502 |
Start date: | 01-07-2020 |
End date: | 30-06-2022 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Hepatitis B virus (HBV) infections remain a major public health issue worldwide. Over 350 -400 million people are chronically infected by HBV, and about 1 million people die each year from the complications of this infection (cirrhosis and hepatocellular carcinoma) with a consequent hefty economic impact on national health systems. This led the World Health Organization to recognise HBV infection as a key priority and adopt the global health sector strategy to eliminate viral hepatitis, with a target of reducing new infections by 90% and mortality by 65% by 2030.The risk of developing a chronic infection in healthy adults is due to a weaker, dysfunctional and narrowly focused CD8+ T cell response. Since the mechanisms underlying HBV persistence are not fully elucidated, current treatments (antiviral drugs and Interferon) aim to reduce the development of liver disease, while a definitive treatment for curing this infection is not yet available on the market.
Within the ERC Consolidator Grant 725038 “FATE”, we recently characterized the mechanisms behind the ineffective CD8+ T cell response towards HBV, demonstrating the potential efficacy of interleukin-2 (IL-2) – a cytokine – to reactivate it, thus achieving antiviral activity. This discovery, jointly with our proprietary third-generation, self-inactivating lentiviral vectors (LVs) that allow selective hepatocellular expression of IL-2, pave the way to single-dose gene therapy-based approach, a potential functional cure against chronic hepatitis B.
2LIVEr project intends to optimize and further validate our novel therapeutic approach from both a technical and commercial standpoint, moving from TRL3 to TRL4, thus fastening the roadmap towards the market.
Status
CLOSEDCall topic
ERC-2020-POCUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)