Summary
Mechanical performance and consumer product safety have been major drivers for glass research and innovation. Strengthened glass products are omnipresent in daily life, from rooftop windows and automotive windshields to solar modules, partition walls and covers for handheld electronic devices. However, thermal strengthening as today’s most widespread method for enhancing the strength and reliability of glasses has reached maturity, leaving fundamental restrictions in terms of applicable glass thickness and type. These limitations do not only prevent the further development of sustainable and efficient lightweight glass structures, but also exclude the process from many of the most prolific specialty glass applications. The present proposal targets market readiness and commercialisation of a novel post-processing method for thin-walled glass products which overcomes the limitations of thermal strengthening by achieving a tenfold decrease in accessible glass thickness and/or coefficient of thermal expansion. By this, we will break ground for applying an otherwise intriguingly efficient technology to thin-walled glass products and glass compositions which were previously outside of the process’s capabilities. This will not only enable significant reductions of embodied energy, CO2 and product weight, but also lead to new opportunities in the strengthening of non-sheet glass products, e.g., fibres, rods and tubes on fields such as pharmaceutical packaging, injectors, functional lighting and illumination, and specialty glass substrates.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/966791 |
Start date: | 01-05-2021 |
End date: | 31-10-2022 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Mechanical performance and consumer product safety have been major drivers for glass research and innovation. Strengthened glass products are omnipresent in daily life, from rooftop windows and automotive windshields to solar modules, partition walls and covers for handheld electronic devices. However, thermal strengthening as today’s most widespread method for enhancing the strength and reliability of glasses has reached maturity, leaving fundamental restrictions in terms of applicable glass thickness and type. These limitations do not only prevent the further development of sustainable and efficient lightweight glass structures, but also exclude the process from many of the most prolific specialty glass applications. The present proposal targets market readiness and commercialisation of a novel post-processing method for thin-walled glass products which overcomes the limitations of thermal strengthening by achieving a tenfold decrease in accessible glass thickness and/or coefficient of thermal expansion. By this, we will break ground for applying an otherwise intriguingly efficient technology to thin-walled glass products and glass compositions which were previously outside of the process’s capabilities. This will not only enable significant reductions of embodied energy, CO2 and product weight, but also lead to new opportunities in the strengthening of non-sheet glass products, e.g., fibres, rods and tubes on fields such as pharmaceutical packaging, injectors, functional lighting and illumination, and specialty glass substrates.Status
CLOSEDCall topic
ERC-2020-POCUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)