SuperH | Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Summary
After the discovery of superconductivity at above 200 K in the hydrogen sulfide system, two clear conclusions can be drawn: i) there is lots of room for discovering new hydrogen-based high-temperature superconducting compounds, and ii) first-principles calculations can guide the discovery of these materials. In fact, the possibility of high-temperature superconductivity in the hydrogen sulfide system had been predicted before the experiment.

However, in order to be accurate and reliable for this type of compounds, first-principles calculations need to go far beyond the state-of-the-art to correctly incorporate the large quantum effects intrinsic to hydrogen atoms. Huge errors on the superconducting properties of materials are often obtained with state-of-the-art methods, misguiding experimental effort.

In this project we will develop a new method that will make first-principles calculations correctly incorporate such quantum effects and, thus, reach an unprecedented precision and accuracy.

With the use of the novel first-principles method we will characterize correctly the physical and chemical properties of hydrogen-based superconductors, aiming at understanding clearly why and when these materials become high-temperature superconductors. We will also investigate the possibility of high-temperature superconductivity at ambient pressure in this type of compounds. In the end of the project, we will focus our theoretical effort to the discovery of new high-temperature superconductors, focusing on hydrides, hydrogen-storage materials, and organic compounds.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/802533
Start date: 01-02-2019
End date: 31-01-2025
Total budget - Public funding: 1 432 500,00 Euro - 1 432 500,00 Euro
Cordis data

Original description

After the discovery of superconductivity at above 200 K in the hydrogen sulfide system, two clear conclusions can be drawn: i) there is lots of room for discovering new hydrogen-based high-temperature superconducting compounds, and ii) first-principles calculations can guide the discovery of these materials. In fact, the possibility of high-temperature superconductivity in the hydrogen sulfide system had been predicted before the experiment.

However, in order to be accurate and reliable for this type of compounds, first-principles calculations need to go far beyond the state-of-the-art to correctly incorporate the large quantum effects intrinsic to hydrogen atoms. Huge errors on the superconducting properties of materials are often obtained with state-of-the-art methods, misguiding experimental effort.

In this project we will develop a new method that will make first-principles calculations correctly incorporate such quantum effects and, thus, reach an unprecedented precision and accuracy.

With the use of the novel first-principles method we will characterize correctly the physical and chemical properties of hydrogen-based superconductors, aiming at understanding clearly why and when these materials become high-temperature superconductors. We will also investigate the possibility of high-temperature superconductivity at ambient pressure in this type of compounds. In the end of the project, we will focus our theoretical effort to the discovery of new high-temperature superconductors, focusing on hydrides, hydrogen-storage materials, and organic compounds.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG