ANYON | Engineering and exploring anyonic quantum gases

Summary
This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.

Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.

Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.

In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/802701
Start date: 01-01-2019
End date: 31-12-2024
Total budget - Public funding: 1 497 500,00 Euro - 1 497 500,00 Euro
Cordis data

Original description

This project enters the experimental investigation of anyonic quantum gases. We will study anyons – conjectured particles with a statistical exchange phase anywhere between 0 and π – in different many-body systems. This progress will be enabled by a unique approach of bringing together artificial gauge fields and quantum gas microscopes for ultracold atoms.

Specifically, we will implement the 1D anyon Hubbard model via a lattice shaking protocol that imprints density-dependent Peierls phases. By engineering the statistical exchange phase, we can continuously tune between bosons and fermions and explore a statistically-induced quantum phase transition. We will monitor the continuous fermionization via the build-up of Friedel oscillations. Using state-of-the-art cold atom technology, we will thus open the physics of anyons to experimental research and address open questions related to their fractional exclusion statistics.

Secondly, we will create fractional quantum Hall systems in rapidly rotating microtraps. Using the quantum gas microscope, we will i) control the optical potentials at a level which allows approaching the centrifugal limit and ii) use small atom numbers equal to the inserted angular momentum quantum number. The strongly-correlated ground states such as the Laughlin state can be identified via their characteristic density correlations. Of particular interest are the quasihole excitations, whose predicted anyonic exchange statistics have not been directly observed to date. We will probe and test their statistics via the characteristic counting sequence in the excitation spectrum. Furthermore, we will test ideas to transfer anyonic properties of the excitations to a second tracer species. This approach will enable us to both probe the fractional exclusion statistics of the excitations and to create a 2D anyonic quantum gas.

In the long run, these techniques open a path to also study non-Abelian anyons with ultracold atoms.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG