Ultramelt | An innovative, disruptive, advanced technology for ultrasonic flow enhancement of injection moulding that significantly reduces cooling times improves productivity

Summary
Injection moulding is a large portion of the EU thermoplastics processing industry. In 2008, its value was €55 bn, but fell to €43 bn in 2009. The industry continues to contract, struggling against low cost economies. While energy cost savings are welcome, cycle time dominates cost so reducing it is key & will increase productivity. Cycle time is dominated by cooling time, which depends on many factors including melt temp. Polymers are often heated well above the ideal melt temp. to aid injection by lowering viscosity. Similarly, very high injection speeds/pressures are used. But we show later that these methods have drawbacks. Our idea is to apply ultrasonic energy into the molten polymer just before it enters the cavity. This can achieve as much as 60% reduction in melt viscosity, enabling a significant reduction in melt temp. while still being able to fill the mould. Lower embodied heat reduces heating/cooling time & energy.

Key benefits are that melt temps. can be maintained and the lower viscosity used to enable easier filling of existing parts with lower internal stresses; melt temp. can be reduced significantly, reducing thermal degradation, energy consumption & cooling time. Or melt temp is maintained and much longer flow paths or thinner wall sections can be filled, offering a step change in design for thinner parts with even shorter cooling time. The ultimate goal of the Phase 2 project is to achieve market readiness of the ‘Ultramelt’ process, with follow-on Phase 3 achieving commercialisation in the EU marketplace. This technology could enable EU moulders & extruders to increase productivity by 50%, increasing competitiveness, enabling them to regain market share and capitalise on new business opportunities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/650989
Start date: 01-10-2014
End date: 31-03-2015
Total budget - Public funding: 71 429,00 Euro - 50 000,00 Euro
Cordis data

Original description

Injection moulding is a large portion of the EU thermoplastics processing industry. In 2008, its value was €55 bn, but fell to €43 bn in 2009. The industry continues to contract, struggling against low cost economies. While energy cost savings are welcome, cycle time dominates cost so reducing it is key & will increase productivity. Cycle time is dominated by cooling time, which depends on many factors including melt temp. Polymers are often heated well above the ideal melt temp. to aid injection by lowering viscosity. Similarly, very high injection speeds/pressures are used. But we show later that these methods have drawbacks. Our idea is to apply ultrasonic energy into the molten polymer just before it enters the cavity. This can achieve as much as 60% reduction in melt viscosity, enabling a significant reduction in melt temp. while still being able to fill the mould. Lower embodied heat reduces heating/cooling time & energy.

Key benefits are that melt temps. can be maintained and the lower viscosity used to enable easier filling of existing parts with lower internal stresses; melt temp. can be reduced significantly, reducing thermal degradation, energy consumption & cooling time. Or melt temp is maintained and much longer flow paths or thinner wall sections can be filled, offering a step change in design for thinner parts with even shorter cooling time. The ultimate goal of the Phase 2 project is to achieve market readiness of the ‘Ultramelt’ process, with follow-on Phase 3 achieving commercialisation in the EU marketplace. This technology could enable EU moulders & extruders to increase productivity by 50%, increasing competitiveness, enabling them to regain market share and capitalise on new business opportunities.

Status

CLOSED

Call topic

NMP-25-2014-1

Update Date

27-10-2022
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
H2020-EU.2.1.2.0. INDUSTRIAL LEADERSHIP - Nanotechnologies - Cross-cutting call topics
H2020-SMEINST-1-2014
NMP-25-2014-1 Accelerating the uptake of nanotechnologies, advanced materials or advanced manufacturing and processing technologies by SMEs
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.1. Mainstreaming SME support, especially through a dedicated instrument
H2020-SMEINST-1-2014
NMP-25-2014-1 Accelerating the uptake of nanotechnologies, advanced materials or advanced manufacturing and processing technologies by SMEs