Summary
Many of the key functions typically associated with living systems, including sensing of the environment, autonomous decision making, and extracting energy and building blocks from the environment for cell growth and division, are all governed by enzymatic reaction networks. Constructing synthetic systems that capture some of these capabilities, i.e. life-inspired systems, would represent a truly disruptive development, as they challenge our notion of what differentiates living systems from synthetic, man-made devices. However, the ability create synthetic life-inspired systems remains an elusive goal. Despite impressive progress in systems chemistry, no clear engineering principles or methodologies exist for the bottom-up construction of functional complex molecular systems The translation of the design principles of living systems into programmable and functional life-inspired systems is one of the outstanding grand challenge in chemistry. The ultimate aim of this proposal is to construct life-inspired systems based on the design blueprints of living matter To achieve this aim, I propose a key breakthrough by presenting a completely new approach to functional complex systems based on programmable enzymatic reactions networks. The envisaged approach is modular and will allow for systematic increases in complexity. The core objectives of this proposal are: - establish a completely new approach to programmable enzymatic reaction networks - compartmentalize network motifs, and separate the small molecule ‘software’ from the enzyme ‘hardware’ - demonstrate modularity and increase the complexity via communication between compartments - develop robust methods to manage the maintenance of non-equilibrium conditions - design and construct complex life-inspired systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/833466 |
Start date: | 01-10-2019 |
End date: | 31-03-2025 |
Total budget - Public funding: | 2 500 000,00 Euro - 2 500 000,00 Euro |
Cordis data
Original description
Many of the key functions typically associated with living systems, including sensing of the environment, autonomous decision making, and extracting energy and building blocks from the environment for cell growth and division, are all governed by enzymatic reaction networks. Constructing synthetic systems that capture some of these capabilities, i.e. life-inspired systems, would represent a truly disruptive development, as they challenge our notion of what differentiates living systems from synthetic, man-made devices. However, the ability create synthetic life-inspired systems remains an elusive goal. Despite impressive progress in systems chemistry, no clear engineering principles or methodologies exist for the bottom-up construction of functional complex molecular systems The translation of the design principles of living systems into programmable and functional life-inspired systems is one of the outstanding grand challenge in chemistry. The ultimate aim of this proposal is to construct life-inspired systems based on the design blueprints of living matter To achieve this aim, I propose a key breakthrough by presenting a completely new approach to functional complex systems based on programmable enzymatic reactions networks. The envisaged approach is modular and will allow for systematic increases in complexity. The core objectives of this proposal are: - establish a completely new approach to programmable enzymatic reaction networks - compartmentalize network motifs, and separate the small molecule ‘software’ from the enzyme ‘hardware’ - demonstrate modularity and increase the complexity via communication between compartments - develop robust methods to manage the maintenance of non-equilibrium conditions - design and construct complex life-inspired systems.Status
SIGNEDCall topic
ERC-2018-ADGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)