DynaMo | Dynamic charging at moving contact lines

Summary
Water drops sliding over hydrophobic surfaces can lead to surface charging. In contrast to charging caused by friction between two solid phases, drop slide electrification is largely unexplored. Slide electrification has been consistently reported, but results are difficult to reproduce. No theory or quantitative explanation currently exists. One reason for the lack of quantitative understanding is that the deposition of charge is a non-equilibrium effect and depends essentially on microscopic processes at the contact line. Slide electrification is relevant for the friction of drops and possible corrosion due to ions deposited on surfaces. It has potential as a means of power generation.

Based on a recently developed lateral adhesion force apparatus (DAFI) and a new theoretical approach to describe slide electrification, we aim for a fundamental understanding of charge separation at sliding drops. Thus we plan to
• identify important parameters for slide electrification (surface chemistry, substrate material, thickness, slide distance, velocity, drop rate, pH value, salt, atmosphere), and
• construct a fast, inverted Reflectance Interference Microscope (RIM) to image the movement of the sliding contact line with unprecedented temporal and spatial resolution. RIM will be combined with DAFI and electronics to detect charge transfer.
• Experiments using macroscopic drops will be complemented by moving micron-sized drops (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/883631
Start date: 01-01-2021
End date: 30-06-2026
Total budget - Public funding: 2 474 500,00 Euro - 2 474 500,00 Euro
Cordis data

Original description

Water drops sliding over hydrophobic surfaces can lead to surface charging. In contrast to charging caused by friction between two solid phases, drop slide electrification is largely unexplored. Slide electrification has been consistently reported, but results are difficult to reproduce. No theory or quantitative explanation currently exists. One reason for the lack of quantitative understanding is that the deposition of charge is a non-equilibrium effect and depends essentially on microscopic processes at the contact line. Slide electrification is relevant for the friction of drops and possible corrosion due to ions deposited on surfaces. It has potential as a means of power generation.

Based on a recently developed lateral adhesion force apparatus (DAFI) and a new theoretical approach to describe slide electrification, we aim for a fundamental understanding of charge separation at sliding drops. Thus we plan to
• identify important parameters for slide electrification (surface chemistry, substrate material, thickness, slide distance, velocity, drop rate, pH value, salt, atmosphere), and
• construct a fast, inverted Reflectance Interference Microscope (RIM) to image the movement of the sliding contact line with unprecedented temporal and spatial resolution. RIM will be combined with DAFI and electronics to detect charge transfer.
• Experiments using macroscopic drops will be complemented by moving micron-sized drops (

Status

SIGNED

Call topic

ERC-2019-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2019-ADG