NewPhysLat | Search for new physics through lattice simulations

Summary
"Despite its monumental success, we have reason to think that the Standard Model of particle physics is an effective description of a more fundamental theory. In order to maximise the chances of success of experiments to pinpoint the breakdown of this theory, it is crucial to provide precise, ab-initio theoretical predictions to compare it with. One of the main challenges in producing these predictions is to reliably take account of the non-perturbative, confining phase of the strong interaction. So far, the most efficient way to achieve that is to use numerical lattice simulations. In this proposal, I focus on theoretical quantities involved in the search for new physics and propose an ambitious lattice simulation programme to determine them precisely. Firstly, I propose to predict rare kaon decays amplitudes. These decays are extremely rare in the Standard Model and are expected to be sensitive to new physics. Secondly, I propose to determine how to include isospin breaking effects in the calculation of the anomalous magnetic moment of the muon and meson leptonic and semi-leptonic decay rates. Including these effects is a highly non-trivial task which is necessary to push the theoretical precision of these observables beyond the percent level in order to provide a higher constraint on the Standard Model. Thirdly, I propose to explore holographic cosmology, an ambitious and innovative alternative to ΛCDM, the ""standard model"" of cosmology. Finally, all these projects will directly contribute to the development of Grid, the emerging world-leading software solution for lattice simulations. All these projects are strongly pushing the boundaries of the application of lattice simulations and the results will be confronted with experimental measurements within the next five years. This proposal focuses on supporting world-leading particle physics experiments and I will deliver high-impact results which have the potential to uncover new physics beyond the Standard Model."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/757646
Start date: 01-10-2017
End date: 30-09-2023
Total budget - Public funding: 1 499 981,00 Euro - 1 499 981,00 Euro
Cordis data

Original description

"Despite its monumental success, we have reason to think that the Standard Model of particle physics is an effective description of a more fundamental theory. In order to maximise the chances of success of experiments to pinpoint the breakdown of this theory, it is crucial to provide precise, ab-initio theoretical predictions to compare it with. One of the main challenges in producing these predictions is to reliably take account of the non-perturbative, confining phase of the strong interaction. So far, the most efficient way to achieve that is to use numerical lattice simulations. In this proposal, I focus on theoretical quantities involved in the search for new physics and propose an ambitious lattice simulation programme to determine them precisely. Firstly, I propose to predict rare kaon decays amplitudes. These decays are extremely rare in the Standard Model and are expected to be sensitive to new physics. Secondly, I propose to determine how to include isospin breaking effects in the calculation of the anomalous magnetic moment of the muon and meson leptonic and semi-leptonic decay rates. Including these effects is a highly non-trivial task which is necessary to push the theoretical precision of these observables beyond the percent level in order to provide a higher constraint on the Standard Model. Thirdly, I propose to explore holographic cosmology, an ambitious and innovative alternative to ΛCDM, the ""standard model"" of cosmology. Finally, all these projects will directly contribute to the development of Grid, the emerging world-leading software solution for lattice simulations. All these projects are strongly pushing the boundaries of the application of lattice simulations and the results will be confronted with experimental measurements within the next five years. This proposal focuses on supporting world-leading particle physics experiments and I will deliver high-impact results which have the potential to uncover new physics beyond the Standard Model."

Status

CLOSED

Call topic

ERC-2017-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-STG