GEOSTICK | Morphodynamic Stickiness: the influence of physical and biological cohesion in sedimentary systems

Summary
Our coasts, estuaries, & low-land river environments are some of the most sensitive systems to sea-level rise & environmental change. In order to manage these systems, & adapt to future changes, we desperately need to be able to predict how they will alter under various scenarios. However, our models for these environments are not yet robust enough to predict, with confidence, very far into the future. Moreover, we also need to improve how we use our understanding of modern environments in reconstructing paleo-environments, where significant assumptions have been made in the way in which relationships derived from the modern have been applied to ancient rocks.

One of the main reasons our models, & geological interpretations, of these environments, are not yet good enough is because these models have formulations that are based on assumptions that these systems are composed of only non-cohesive sands. However, mud is the most common sediment on Earth & many of these systems are actually dominated by biologically-active muds & complex sediment mixtures. We need to therefore find ways to incorporate the effect of sticky mud & sticky biological components into our predictions. Recent work my colleagues & I have published show just how important such abiotic-biotic interactions can be: inclusion of only relatively small (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/725955
Start date: 01-05-2017
End date: 31-01-2023
Total budget - Public funding: 2 581 155,00 Euro - 2 581 155,00 Euro
Cordis data

Original description

Our coasts, estuaries, & low-land river environments are some of the most sensitive systems to sea-level rise & environmental change. In order to manage these systems, & adapt to future changes, we desperately need to be able to predict how they will alter under various scenarios. However, our models for these environments are not yet robust enough to predict, with confidence, very far into the future. Moreover, we also need to improve how we use our understanding of modern environments in reconstructing paleo-environments, where significant assumptions have been made in the way in which relationships derived from the modern have been applied to ancient rocks.

One of the main reasons our models, & geological interpretations, of these environments, are not yet good enough is because these models have formulations that are based on assumptions that these systems are composed of only non-cohesive sands. However, mud is the most common sediment on Earth & many of these systems are actually dominated by biologically-active muds & complex sediment mixtures. We need to therefore find ways to incorporate the effect of sticky mud & sticky biological components into our predictions. Recent work my colleagues & I have published show just how important such abiotic-biotic interactions can be: inclusion of only relatively small (

Status

SIGNED

Call topic

ERC-2016-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2016
ERC-2016-COG