RMAST | Random Models in Arithmetic and Spectral Theory

Summary
The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingredient, the first about minimal gaps between the eigenvalues of the Laplacian, where I seek a fit with the corresponding quantities for the various conjectured universality classes (Poisson/GUE/GOE), and the second about curvature measures of nodal lines of eigenfunctions of the Laplacian, where I seek to determine the size of the curvature measures for the large eigenvalue limit. The third project originates in analytic number theory, on angular distribution of prime ideals in number fields, function field analogues and connections with Random Matrix Theory, where I raise new conjectures and problems on a very classical subject, and aim to resolve them at least in the function field setting.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/786758
Start date: 01-02-2019
End date: 31-01-2025
Total budget - Public funding: 1 840 625,00 Euro - 1 840 625,00 Euro
Cordis data

Original description

The proposal studies deterministic problems in the spectral theory of the Laplacian and in analytic number theory by using random models. I propose two projects in spectral theory on this theme, both with a strong arithmetic ingredient, the first about minimal gaps between the eigenvalues of the Laplacian, where I seek a fit with the corresponding quantities for the various conjectured universality classes (Poisson/GUE/GOE), and the second about curvature measures of nodal lines of eigenfunctions of the Laplacian, where I seek to determine the size of the curvature measures for the large eigenvalue limit. The third project originates in analytic number theory, on angular distribution of prime ideals in number fields, function field analogues and connections with Random Matrix Theory, where I raise new conjectures and problems on a very classical subject, and aim to resolve them at least in the function field setting.

Status

SIGNED

Call topic

ERC-2017-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-ADG