FunI | Revealing Fundamental Interactions and their Symmetries at the highest Precision and the lowest Energies

Summary
The four fundamental interactions and their symmetries, the fundamental constants as well as the properties of elementary particles like masses and moments, determine the basic structure of the universe and are the basis for our so well tested Standard Model (SM) of physics. Performing stringent tests on these interactions and symmetries in extreme conditions at lowest energies and with highest precision by comparing e.g. the properties of particles and their counterpart, the antiparticles, will allow us to search for physics beyond the SM. Any improvement of these tests beyond their present limits will require novel experimental techniques. To this end, we propose ambitious Penning-trap based single-ion experiments and measurements of magnetic moments and atomic masses to substantially improve the to-date best limits on some of the key SM predictions. While the measurement technique in determining the eigenfrequencies of the stored particles with unprecedented precision will be identical to the technique used in the past ERC grant by the PI (MEFUCO - MEasurements of FUndamental COnstants), the novel ion preparation and cooling techniques to be developed as well as the physics questions to be addressed are completely different. The new findings will enable us to perform stringent tests of fundamental symmetries like charge-parity-time reversal symmetry (CPT theorem) with (anti)protons or of the energy-mass equivalence principle as well as tests of interactions like quantum electrodynamics in strong fields by using highly charged ions. This will enable us to set new limits on SM predictions or even to reveal their failures. To meet these challenges, advanced charge breeding and cooling techniques will make it possible for us to achieve among other advances a ten-fold improved test of E = mc2, and thus of Einstein’s special theory of relativity and the most stringent CPT test in the baryonic sector by comparing the magnetic moments of the proton and the antiproton.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/832848
Start date: 01-05-2019
End date: 31-10-2024
Total budget - Public funding: 2 500 000,00 Euro - 2 500 000,00 Euro
Cordis data

Original description

The four fundamental interactions and their symmetries, the fundamental constants as well as the properties of elementary particles like masses and moments, determine the basic structure of the universe and are the basis for our so well tested Standard Model (SM) of physics. Performing stringent tests on these interactions and symmetries in extreme conditions at lowest energies and with highest precision by comparing e.g. the properties of particles and their counterpart, the antiparticles, will allow us to search for physics beyond the SM. Any improvement of these tests beyond their present limits will require novel experimental techniques. To this end, we propose ambitious Penning-trap based single-ion experiments and measurements of magnetic moments and atomic masses to substantially improve the to-date best limits on some of the key SM predictions. While the measurement technique in determining the eigenfrequencies of the stored particles with unprecedented precision will be identical to the technique used in the past ERC grant by the PI (MEFUCO - MEasurements of FUndamental COnstants), the novel ion preparation and cooling techniques to be developed as well as the physics questions to be addressed are completely different. The new findings will enable us to perform stringent tests of fundamental symmetries like charge-parity-time reversal symmetry (CPT theorem) with (anti)protons or of the energy-mass equivalence principle as well as tests of interactions like quantum electrodynamics in strong fields by using highly charged ions. This will enable us to set new limits on SM predictions or even to reveal their failures. To meet these challenges, advanced charge breeding and cooling techniques will make it possible for us to achieve among other advances a ten-fold improved test of E = mc2, and thus of Einstein’s special theory of relativity and the most stringent CPT test in the baryonic sector by comparing the magnetic moments of the proton and the antiproton.

Status

SIGNED

Call topic

ERC-2018-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-ADG