GIDE | Molecular diversification of inhibitory neurons during development

Summary
Cortical interneurons are a diverse class of inhibitory neurons that play a particularly important role in the stability of the neural circuits underlying cognitive and higher order brain functions. A growing body of evidence suggests that perturbation of interneuron development can result in a variety of complex neuropsychiatric disorders, including autism, bipolar disorder, and schizophrenia. Thus, elucidating how interneurons develop and integrate into canonical brain circuits is crucial for understanding the brain in both health and disease.

During perinatal development, intrinsic and environmental processes cooperate to establish the adult form of brain connectivity and behaviour control. To elucidate the molecular mechanisms underlying these interactive processes, I propose to combine genetic fate-mapping techniques with high-throughput single-cell RNA sequencing technologies to gain a detailed understanding of neurogenesis at the cellular level and elucidate how an immense diversity of interneuron subtypes is generated (Aim 1). Furthermore, I will utilize a novel retroviral barcoding strategy to reveal how much of an interneuron’s fate is genetically predetermined by lineage within progenitor zones of the ventral forebrain (Aim 2). Finally, I will study the genetic mechanisms that enable cell intrinsic programs to be shaped by environmental activity-dependent processes during the critical window of development (Aim 3). Candidate genes resulting from these aims will be functionally characterized through gain of function and loss of function methods.

This proposal takes full advantage of my extensive training in viral and mouse genetic techniques, single-cell transcriptomic data processing, and in vivo manipulation of neuronal activity. I am confident that I will be able to successfully complete the proposed aims while exploring fascinating and long-standing questions of developmental neurobiology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/803984
Start date: 01-01-2019
End date: 31-12-2024
Total budget - Public funding: 1 493 382,00 Euro - 1 493 382,00 Euro
Cordis data

Original description

Cortical interneurons are a diverse class of inhibitory neurons that play a particularly important role in the stability of the neural circuits underlying cognitive and higher order brain functions. A growing body of evidence suggests that perturbation of interneuron development can result in a variety of complex neuropsychiatric disorders, including autism, bipolar disorder, and schizophrenia. Thus, elucidating how interneurons develop and integrate into canonical brain circuits is crucial for understanding the brain in both health and disease.

During perinatal development, intrinsic and environmental processes cooperate to establish the adult form of brain connectivity and behaviour control. To elucidate the molecular mechanisms underlying these interactive processes, I propose to combine genetic fate-mapping techniques with high-throughput single-cell RNA sequencing technologies to gain a detailed understanding of neurogenesis at the cellular level and elucidate how an immense diversity of interneuron subtypes is generated (Aim 1). Furthermore, I will utilize a novel retroviral barcoding strategy to reveal how much of an interneuron’s fate is genetically predetermined by lineage within progenitor zones of the ventral forebrain (Aim 2). Finally, I will study the genetic mechanisms that enable cell intrinsic programs to be shaped by environmental activity-dependent processes during the critical window of development (Aim 3). Candidate genes resulting from these aims will be functionally characterized through gain of function and loss of function methods.

This proposal takes full advantage of my extensive training in viral and mouse genetic techniques, single-cell transcriptomic data processing, and in vivo manipulation of neuronal activity. I am confident that I will be able to successfully complete the proposed aims while exploring fascinating and long-standing questions of developmental neurobiology.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG