ErgComNum | Ergodic theory and additive combinatorics

Summary
The last decade has witnessed a new spring for dynamical systems. The field - initiated by Poincare in the study of the N-body problem - has become essential in the understanding of seemingly far off fields such as combinatorics, number theory and theoretical computer science. In particular, ideas from ergodic theory played an important role in the resolution of long standing open problems in combinatorics and number theory. A striking example is the role of dynamics on nilmanifolds in the recent proof of Hardy-Littlewood estimates for the number of solutions to systems of linear equations of finite complexity in the prime numbers. The interplay between ergodic theory, number theory and additive combinatorics has proved very fruitful; it is a fast growing area in mathematics attracting many young researchers. We propose to tackle central open problems in the area.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/682150
Start date: 01-05-2016
End date: 31-10-2021
Total budget - Public funding: 1 342 500,00 Euro - 1 342 500,00 Euro
Cordis data

Original description

The last decade has witnessed a new spring for dynamical systems. The field - initiated by Poincare in the study of the N-body problem - has become essential in the understanding of seemingly far off fields such as combinatorics, number theory and theoretical computer science. In particular, ideas from ergodic theory played an important role in the resolution of long standing open problems in combinatorics and number theory. A striking example is the role of dynamics on nilmanifolds in the recent proof of Hardy-Littlewood estimates for the number of solutions to systems of linear equations of finite complexity in the prime numbers. The interplay between ergodic theory, number theory and additive combinatorics has proved very fruitful; it is a fast growing area in mathematics attracting many young researchers. We propose to tackle central open problems in the area.

Status

CLOSED

Call topic

ERC-CoG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-CoG
ERC-CoG-2015 ERC Consolidator Grant