ConsQuanDyn | Constrained Quantum Dynamics

Summary
Recently, tremendous progress has been made in exploring non-equilibrium dynamics of correlated quantum matter. The project ConsQuanDyn investigates the relaxation dynamics and the dynamical quantum phases, induced by parameter quenches or by periodic drive, in quantum matter with dynamically constrained excitations. Such constrained systems, which can be dual to gauge theories and host exotic topological order, have been recently realized in Rydberg quantum simulators and have a long tradition in condensed matter physics. However, it is an important open challenge to describe and understand their far-from-equilibrium dynamics. The central focus of the project ConsQuanDyn is to develop new concepts and new theoretical methods to study constrained quantum systems far from thermal equilibrium.

The project has three principal objectives each of which would represent a major contribution to the field:
(O1) To identify glassy dynamics and hydrodynamic transport in constrained quantum lattice gas, quantum dimer and fracton models.
(O2) To demonstrate information scrambling and entanglement growth in constrained Hilbert spaces.
(O3) To predict exotic dynamical quantum phases and to study their dynamical criticality both in quenched and in periodically driven constrained systems.

To successfully meet our ambitious objectives, my team and I will develop two complementary theoretical approaches based on exact numerical techniques and on non-equilibrium field theory. This allows us to understand fundamental dynamical properties of constrained quantum systems and to guide future experiments. Constrained quantum systems may realize topological quantum bits and self-correcting quantum memories. Due to the international effort of inventing new quantum technology, that inherently operates out of equilibrium, it is now the right time to foster a deep understanding of the non-equilibrium dynamics in constrained quantum matter, which is the central goal of the project ConsQuanDyn.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/851161
Start date: 01-10-2020
End date: 30-09-2025
Total budget - Public funding: 1 498 750,00 Euro - 1 498 750,00 Euro
Cordis data

Original description

Recently, tremendous progress has been made in exploring non-equilibrium dynamics of correlated quantum matter. The project ConsQuanDyn investigates the relaxation dynamics and the dynamical quantum phases, induced by parameter quenches or by periodic drive, in quantum matter with dynamically constrained excitations. Such constrained systems, which can be dual to gauge theories and host exotic topological order, have been recently realized in Rydberg quantum simulators and have a long tradition in condensed matter physics. However, it is an important open challenge to describe and understand their far-from-equilibrium dynamics. The central focus of the project ConsQuanDyn is to develop new concepts and new theoretical methods to study constrained quantum systems far from thermal equilibrium.

The project has three principal objectives each of which would represent a major contribution to the field:
(O1) To identify glassy dynamics and hydrodynamic transport in constrained quantum lattice gas, quantum dimer and fracton models.
(O2) To demonstrate information scrambling and entanglement growth in constrained Hilbert spaces.
(O3) To predict exotic dynamical quantum phases and to study their dynamical criticality both in quenched and in periodically driven constrained systems.

To successfully meet our ambitious objectives, my team and I will develop two complementary theoretical approaches based on exact numerical techniques and on non-equilibrium field theory. This allows us to understand fundamental dynamical properties of constrained quantum systems and to guide future experiments. Constrained quantum systems may realize topological quantum bits and self-correcting quantum memories. Due to the international effort of inventing new quantum technology, that inherently operates out of equilibrium, it is now the right time to foster a deep understanding of the non-equilibrium dynamics in constrained quantum matter, which is the central goal of the project ConsQuanDyn.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG