Summary
This project is founded on a new formulation of Einstein's equations in dimension 4, which I developed together with my co-authors. This new approach reveals a surprising link between four-dimensional Einstein manifolds and six-dimensional symplectic geometry. My project will exploit this interplay in both directions: using Riemannian geometry to prove results about symplectic manifolds and using symplectic geometry to prove results about Reimannian manifolds.
Our new idea is to rewrite Einstein's equations using the language of gauge theory. The fundamental objects are no longer Riemannian metrics, but instead certain connections over a 4-manifold M. A connection A defines a metric g_A via its curvature, analogous to the relationship between the electromagnetic potential and field in Maxwell's theory. The total volume of (M,g_A) is an action S(A) for the theory, whose critical points give Einstein metrics. At the same time, the connection A also determines a symplectic structure \omega_A on an associated 6-manifold Z which fibres over M.
My project has two main goals. The first is to classify the symplectic manifolds which arise this way. Classification of general symplectic 6-manifolds is beyond current techniques of symplectic geometry, making my aims here very ambitious. My second goal is to provide an existence theory both for anti-self-dual Poincaré--Einstein metrics and for minimal surfaces in such manifolds. Again, my aims here go decisively beyond the state of the art. In all of these situations, a fundamental problem is the formation of singularities in degenerating families. What makes new progress possible is the fresh input coming from the symplectic manifold Z. I will combine this with techniques from Riemannian geometry and gauge theory to control the singularities which can occur.
Our new idea is to rewrite Einstein's equations using the language of gauge theory. The fundamental objects are no longer Riemannian metrics, but instead certain connections over a 4-manifold M. A connection A defines a metric g_A via its curvature, analogous to the relationship between the electromagnetic potential and field in Maxwell's theory. The total volume of (M,g_A) is an action S(A) for the theory, whose critical points give Einstein metrics. At the same time, the connection A also determines a symplectic structure \omega_A on an associated 6-manifold Z which fibres over M.
My project has two main goals. The first is to classify the symplectic manifolds which arise this way. Classification of general symplectic 6-manifolds is beyond current techniques of symplectic geometry, making my aims here very ambitious. My second goal is to provide an existence theory both for anti-self-dual Poincaré--Einstein metrics and for minimal surfaces in such manifolds. Again, my aims here go decisively beyond the state of the art. In all of these situations, a fundamental problem is the formation of singularities in degenerating families. What makes new progress possible is the fresh input coming from the symplectic manifold Z. I will combine this with techniques from Riemannian geometry and gauge theory to control the singularities which can occur.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/646649 |
Start date: | 01-09-2015 |
End date: | 31-08-2021 |
Total budget - Public funding: | 1 162 880,00 Euro - 1 162 880,00 Euro |
Cordis data
Original description
This project is founded on a new formulation of Einstein's equations in dimension 4, which I developed together with my co-authors. This new approach reveals a surprising link between four-dimensional Einstein manifolds and six-dimensional symplectic geometry. My project will exploit this interplay in both directions: using Riemannian geometry to prove results about symplectic manifolds and using symplectic geometry to prove results about Reimannian manifolds.Our new idea is to rewrite Einstein's equations using the language of gauge theory. The fundamental objects are no longer Riemannian metrics, but instead certain connections over a 4-manifold M. A connection A defines a metric g_A via its curvature, analogous to the relationship between the electromagnetic potential and field in Maxwell's theory. The total volume of (M,g_A) is an action S(A) for the theory, whose critical points give Einstein metrics. At the same time, the connection A also determines a symplectic structure \omega_A on an associated 6-manifold Z which fibres over M.
My project has two main goals. The first is to classify the symplectic manifolds which arise this way. Classification of general symplectic 6-manifolds is beyond current techniques of symplectic geometry, making my aims here very ambitious. My second goal is to provide an existence theory both for anti-self-dual Poincaré--Einstein metrics and for minimal surfaces in such manifolds. Again, my aims here go decisively beyond the state of the art. In all of these situations, a fundamental problem is the formation of singularities in degenerating families. What makes new progress possible is the fresh input coming from the symplectic manifold Z. I will combine this with techniques from Riemannian geometry and gauge theory to control the singularities which can occur.
Status
CLOSEDCall topic
ERC-CoG-2014Update Date
27-04-2024
Images
No images available.
Geographical location(s)