AdOMiS | Adaptive Optical Microscopy Systems: Unifying theory, practice and applications

Summary
Recent technological advances in optical microscopy have vastly broadened the possibilities for applications in the biomedical sciences. Fluorescence microscopy is the central tool for investigation of molecular structures and dynamics that take place in the cellular and tissue environment. Coupled with progress in labeling methods, these microscopes permit observation of biological structures and processes with unprecedented sensitivity and resolution. This work has been enabled by the engineering development of diverse optical systems that provide different capabilities for the imaging toolkit. All such methods rely upon high fidelity optics to provide optimal resolution and efficiency, but they all suffer from aberrations caused by refractive index variations within the specimen. It is widely accepted that in many applications this fundamental problem prevents optimum operation and limits capability. Adaptive optics (AO) has been introduced to overcome these limitations by correcting aberrations and a range of demonstrations has shown clearly its potential. Indeed, it shows great promise to improve virtually all types of research or commercial microscopes, but significant challenges must still be met before AO can be widely implemented in routine imaging. Current advances are being made through development of bespoke AO solutions to individual imaging tasks. However, the diversity of microscopy methods means that individual solutions are often not translatable to other systems. This proposal is directed towards the creation of theoretical and practical frameworks that tie together AO concepts and provide a suite of scientific tools with broad application. This will be achieved through a systems approach that encompasses theoretical modelling, optical engineering and the requirements of biological applications. Additional outputs will include practical designs, operating protocols and software algorithms that will support next generation AO microscope systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/695140
Start date: 01-09-2016
End date: 31-08-2022
Total budget - Public funding: 3 234 789,00 Euro - 3 234 789,00 Euro
Cordis data

Original description

Recent technological advances in optical microscopy have vastly broadened the possibilities for applications in the biomedical sciences. Fluorescence microscopy is the central tool for investigation of molecular structures and dynamics that take place in the cellular and tissue environment. Coupled with progress in labeling methods, these microscopes permit observation of biological structures and processes with unprecedented sensitivity and resolution. This work has been enabled by the engineering development of diverse optical systems that provide different capabilities for the imaging toolkit. All such methods rely upon high fidelity optics to provide optimal resolution and efficiency, but they all suffer from aberrations caused by refractive index variations within the specimen. It is widely accepted that in many applications this fundamental problem prevents optimum operation and limits capability. Adaptive optics (AO) has been introduced to overcome these limitations by correcting aberrations and a range of demonstrations has shown clearly its potential. Indeed, it shows great promise to improve virtually all types of research or commercial microscopes, but significant challenges must still be met before AO can be widely implemented in routine imaging. Current advances are being made through development of bespoke AO solutions to individual imaging tasks. However, the diversity of microscopy methods means that individual solutions are often not translatable to other systems. This proposal is directed towards the creation of theoretical and practical frameworks that tie together AO concepts and provide a suite of scientific tools with broad application. This will be achieved through a systems approach that encompasses theoretical modelling, optical engineering and the requirements of biological applications. Additional outputs will include practical designs, operating protocols and software algorithms that will support next generation AO microscope systems.

Status

CLOSED

Call topic

ERC-ADG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-AdG
ERC-ADG-2015 ERC Advanced Grant