PRIORS | Neural circuit dynamics underlying expectation and their impact on the variability of perceptual choices

Summary
Just as our experience has its origin in our perceptions, our perceptions are fundamentally shaped by our experience. How does the brain build expectations from experience and how do expectations impact perception? In a Bayesian framework, expectations determine the environment’s prior probability, which combined with stimulus information, can yield optimal decisions. While the accumulation-to-bound model describes temporal integration of sensory inputs and their combination with the prior, we still lack electrophysiological evidence showing neural circuits that integrate previous events adaptively to generate advantageous expectations.

I aim to understand (1) how circuits in the cerebral cortex integrate the recent history of stimuli and rewards to generate expectations, (2) how expectations are combined with sensory input across the processing hierarchy to bias decisions and (3) whether the dynamics of the expectation can dominate neuronal and choice variability. I will train rats in a new auditory discrimination task using predictable stimulus sequences that, once learned, are used to compute adaptive priors that improve discrimination. I will perform population recordings and optogenetic manipulations to identify the brain areas involved in the computation of priors in the task. To reveal the circuit mechanisms underlying the observed dynamics I will train a computational network model to classify fluctuating inputs and, by adapting its dynamics to the statistics of the stimulus sequence, accumulate evidence across trials to maximize performance. The model will generalize the accumulation-to-bound model by integrating information across various time scales and will partition choice variability into that caused by the dynamics of the prior or by fluctuations in the stimulus response. My proposal points at a paradigm shift from viewing neuronal variability as a corrupting source of noise to the result of our brain’s inevitable tendency to predict the future.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/683209
Start date: 01-09-2016
End date: 28-02-2022
Total budget - Public funding: 2 000 000,00 Euro - 2 000 000,00 Euro
Cordis data

Original description

Just as our experience has its origin in our perceptions, our perceptions are fundamentally shaped by our experience. How does the brain build expectations from experience and how do expectations impact perception? In a Bayesian framework, expectations determine the environment’s prior probability, which combined with stimulus information, can yield optimal decisions. While the accumulation-to-bound model describes temporal integration of sensory inputs and their combination with the prior, we still lack electrophysiological evidence showing neural circuits that integrate previous events adaptively to generate advantageous expectations.

I aim to understand (1) how circuits in the cerebral cortex integrate the recent history of stimuli and rewards to generate expectations, (2) how expectations are combined with sensory input across the processing hierarchy to bias decisions and (3) whether the dynamics of the expectation can dominate neuronal and choice variability. I will train rats in a new auditory discrimination task using predictable stimulus sequences that, once learned, are used to compute adaptive priors that improve discrimination. I will perform population recordings and optogenetic manipulations to identify the brain areas involved in the computation of priors in the task. To reveal the circuit mechanisms underlying the observed dynamics I will train a computational network model to classify fluctuating inputs and, by adapting its dynamics to the statistics of the stimulus sequence, accumulate evidence across trials to maximize performance. The model will generalize the accumulation-to-bound model by integrating information across various time scales and will partition choice variability into that caused by the dynamics of the prior or by fluctuations in the stimulus response. My proposal points at a paradigm shift from viewing neuronal variability as a corrupting source of noise to the result of our brain’s inevitable tendency to predict the future.

Status

CLOSED

Call topic

ERC-CoG-2015

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2015
ERC-2015-CoG
ERC-CoG-2015 ERC Consolidator Grant