DimorphicCircuits | Elucidating the development of sexually-dimorphic circuits: from molecular mechanisms to synapses and behavior

Summary
In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. These dimorphisms are the basis for sex-biased phenotypes in many neurological diseases. Yet, complete understanding of the underlying mechanism is still missing. How does the sexual identity impose molecular changes to individual neurons and circuits? What are the sex-specific synaptic changes that occur during development in these circuits? We recently demonstrated a sexually dimorphic dimension of neuronal connectivity: neurons belonging to a shared nervous system rewire in a sex-specific manner to generate sexually dimorphic behaviors. New findings from our lab further reveal a significant difference in the way the two sexes in the nematode C. elegans respond to aversive stimuli. These dimorphic responses are mediated via sex-shared circuits that receive similar environmental input, yet respond differently.
Building on our exciting preliminary results, we seek to elucidate how genetic sex modulates neuronal function, neural circuit dynamics and behavior during development. This proposal will pursue three complementary objectives: (i) Map the repertoire of sexually dimorphic avoidance behaviors; (ii) Study the synaptic basis for the development of sexually dimorphic circuits; and (iii) Elucidate the molecular basis of sexually dimorphic neuronal circuits. These mechanisms can only be currently resolved in C. elegans, where the entire connectome of the nervous system for both sexes has been mapped. Using cutting-edge optogenetics, calcium imaging, activity-dependent trans-synaptic labeling, genetic screens and single-cell transcriptome analysis we will shed light on the elusive connection between genes, circuits and behavior. Understanding how genetic sex modulates neuronal circuits will aid in the development of novel gender-specific therapies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/850784
Start date: 01-10-2019
End date: 30-09-2024
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

In sexually reproducing species, males and females respond to environmental sensory cues and transform the input into sexually dimorphic traits. These dimorphisms are the basis for sex-biased phenotypes in many neurological diseases. Yet, complete understanding of the underlying mechanism is still missing. How does the sexual identity impose molecular changes to individual neurons and circuits? What are the sex-specific synaptic changes that occur during development in these circuits? We recently demonstrated a sexually dimorphic dimension of neuronal connectivity: neurons belonging to a shared nervous system rewire in a sex-specific manner to generate sexually dimorphic behaviors. New findings from our lab further reveal a significant difference in the way the two sexes in the nematode C. elegans respond to aversive stimuli. These dimorphic responses are mediated via sex-shared circuits that receive similar environmental input, yet respond differently.
Building on our exciting preliminary results, we seek to elucidate how genetic sex modulates neuronal function, neural circuit dynamics and behavior during development. This proposal will pursue three complementary objectives: (i) Map the repertoire of sexually dimorphic avoidance behaviors; (ii) Study the synaptic basis for the development of sexually dimorphic circuits; and (iii) Elucidate the molecular basis of sexually dimorphic neuronal circuits. These mechanisms can only be currently resolved in C. elegans, where the entire connectome of the nervous system for both sexes has been mapped. Using cutting-edge optogenetics, calcium imaging, activity-dependent trans-synaptic labeling, genetic screens and single-cell transcriptome analysis we will shed light on the elusive connection between genes, circuits and behavior. Understanding how genetic sex modulates neuronal circuits will aid in the development of novel gender-specific therapies.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG