DEEPTIME | Probing the history of matter in deep time

Summary
The solar system represents the archetype for the formation of rocky planets and habitable worlds. A full understanding of its formation and earliest evolution is thus one of the most fundamental goals in natural sciences. The only tangible record of the formative stages of the solar system comes from ancient meteorites and their components some of which date back to the to the birth of our Sun. The main objective of this proposal is to investigate the timescales and processes leading to the formation of the solar system, including the delivery of volatile elements to the accretion regions of rocky planets, by combining absolute ages, isotopic and trace element compositions as well as atomic and structural analysis of meteorites and their components. We identify nucleosynthetic fingerprinting as a tool allowing us to probe the history of solids parental to our solar system across cosmic times, namely from their parent stars in the Galaxy through their modification and incorporation into disk objects, including asteroidal bodies and planets. Our data will be obtained using state-of-the-art instruments including mass-spectrometers (MC-ICPMS, TIMS, SIMS), atom probe and transmission electron microscopy. These data will allow us to: (1) provide formation timescales for presolar grains and their parent stars as well as understand how these grains may control the solar system’s nucleosynthetic variability, (2) track the formation timescales of disk reservoirs and the mass fluxes between and within these regions (3) better our understanding of the timing and flux of volatile elements to the inner protoplanetary disk as well as the timescales and mechanism of primordial crust formation in rocky planets. The novel questions outlined in this proposal, including high-risk high-gain ventures, can only now be tackled using pioneering methods and approaches developed by the PI’s group and collaborators. Thus, we are in a unique position to make step-change discoveries.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/833275
Start date: 01-01-2020
End date: 31-12-2025
Total budget - Public funding: 2 495 496,00 Euro - 2 495 496,00 Euro
Cordis data

Original description

The solar system represents the archetype for the formation of rocky planets and habitable worlds. A full understanding of its formation and earliest evolution is thus one of the most fundamental goals in natural sciences. The only tangible record of the formative stages of the solar system comes from ancient meteorites and their components some of which date back to the to the birth of our Sun. The main objective of this proposal is to investigate the timescales and processes leading to the formation of the solar system, including the delivery of volatile elements to the accretion regions of rocky planets, by combining absolute ages, isotopic and trace element compositions as well as atomic and structural analysis of meteorites and their components. We identify nucleosynthetic fingerprinting as a tool allowing us to probe the history of solids parental to our solar system across cosmic times, namely from their parent stars in the Galaxy through their modification and incorporation into disk objects, including asteroidal bodies and planets. Our data will be obtained using state-of-the-art instruments including mass-spectrometers (MC-ICPMS, TIMS, SIMS), atom probe and transmission electron microscopy. These data will allow us to: (1) provide formation timescales for presolar grains and their parent stars as well as understand how these grains may control the solar system’s nucleosynthetic variability, (2) track the formation timescales of disk reservoirs and the mass fluxes between and within these regions (3) better our understanding of the timing and flux of volatile elements to the inner protoplanetary disk as well as the timescales and mechanism of primordial crust formation in rocky planets. The novel questions outlined in this proposal, including high-risk high-gain ventures, can only now be tackled using pioneering methods and approaches developed by the PI’s group and collaborators. Thus, we are in a unique position to make step-change discoveries.

Status

SIGNED

Call topic

ERC-2018-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-ADG