AntiCamp | Developing proprietary antibacterial phage-based particles against Campylobacter jejuni for food decontamination

Summary
Campylobacter jejuni is the most common foodborne contamination in Europe, affecting millions of people, and costing billions of Euros. Current procedures to treat this contamination do not offer sufficient solutions. Here I present a unique approach to eradicate the pathogen from food by utilizing a cost-effective and safe product that does not alter the taste, texture, or appearance of the food. This innovation involves a spray composed of proprietary phage-based particles, which inject antibacterial genes into C. jejuni, thus killing the pathogen. Current phage-based technologies for decontaminating food encounter a major hurdle, because large-scale phage production in the fastidious and pathogenic C. jejuni strain is highly challenging. However, a major advantage of my product is that it can be prepared in a safe and easy-to-grow Escherichia coli host rather than in C. jejuni. Another significant advantage is that the technology producing the phages enables rapid and efficient modifications to the phage-based particles. This platform thus allows easy isolation and manufacture of cocktails of phage-based particles able to target a variety of pathogenic serotypes of C. jejuni. Furthermore, the proprietary particles all have a common scaffold, thus simplifying the regulation, safety, and route of manufacture. I propose a clear commercialization activity with a highly qualified team that I recruited, from both the scientific and commercialization fields. Developing and commercializing this product will provide a proof-of-concept to demonstrate the strength of this approach and will thus pave the way for additional innovative materials based on this technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/811322
Start date: 01-12-2018
End date: 31-05-2020
Total budget - Public funding: 150 000,00 Euro - 150 000,00 Euro
Cordis data

Original description

Campylobacter jejuni is the most common foodborne contamination in Europe, affecting millions of people, and costing billions of Euros. Current procedures to treat this contamination do not offer sufficient solutions. Here I present a unique approach to eradicate the pathogen from food by utilizing a cost-effective and safe product that does not alter the taste, texture, or appearance of the food. This innovation involves a spray composed of proprietary phage-based particles, which inject antibacterial genes into C. jejuni, thus killing the pathogen. Current phage-based technologies for decontaminating food encounter a major hurdle, because large-scale phage production in the fastidious and pathogenic C. jejuni strain is highly challenging. However, a major advantage of my product is that it can be prepared in a safe and easy-to-grow Escherichia coli host rather than in C. jejuni. Another significant advantage is that the technology producing the phages enables rapid and efficient modifications to the phage-based particles. This platform thus allows easy isolation and manufacture of cocktails of phage-based particles able to target a variety of pathogenic serotypes of C. jejuni. Furthermore, the proprietary particles all have a common scaffold, thus simplifying the regulation, safety, and route of manufacture. I propose a clear commercialization activity with a highly qualified team that I recruited, from both the scientific and commercialization fields. Developing and commercializing this product will provide a proof-of-concept to demonstrate the strength of this approach and will thus pave the way for additional innovative materials based on this technology.

Status

CLOSED

Call topic

ERC-2018-PoC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-PoC