Summary
Cyber-physical real-time systems are information processing systems that require both functional as well as timing correctness and have interactions with the physical world. Since time naturally progresses in the physical world, safe bounds of deterministic or probabilistic timing properties are required. PropRT will explore the possibilities to construct timing analysis for complex cyber-physical real-time systems from formal properties. The target properties should be modular so that safe and tight analysis as well as optimization can be performed (semi-)automatically. New, mathematical, modulable, and fundamental properties for property-based (schedulability) timing analyses and scheduling optimizations are needed to capture the pivotal properties of cyber-physical real-time systems, and thus enable mathematical and algorithmic research on the topic. Different flexibility and tradeoff options to achieve real-time guarantees should be provided in a modularized manner to enable tradeoffs between execution efficiency and timing predictability. The success of this project will provide a comprehensive view of the landscape of design, analysis, and optimization options for timing properties in cyber-physical real-time systems. Advanced optimization and analytical frameworks based on the formal properties of scheduling algorithms and schedulability analysis will serve as new ingredients for designing predictable cyber-physical systems, which will trigger a revolution of computer architectures, system modeling, communication mechanisms, and synchronization designs in the near future. The results will bring a new design process to further allow control designers and system integrators in cyber-physical real-time systems to jointly explore different configurations of controllers, computation, and communication parameters for designing timing predictable cyber-physical system applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/865170 |
Start date: | 01-01-2021 |
End date: | 31-12-2025 |
Total budget - Public funding: | 1 999 055,00 Euro - 1 999 055,00 Euro |
Cordis data
Original description
Cyber-physical real-time systems are information processing systems that require both functional as well as timing correctness and have interactions with the physical world. Since time naturally progresses in the physical world, safe bounds of deterministic or probabilistic timing properties are required. PropRT will explore the possibilities to construct timing analysis for complex cyber-physical real-time systems from formal properties. The target properties should be modular so that safe and tight analysis as well as optimization can be performed (semi-)automatically. New, mathematical, modulable, and fundamental properties for property-based (schedulability) timing analyses and scheduling optimizations are needed to capture the pivotal properties of cyber-physical real-time systems, and thus enable mathematical and algorithmic research on the topic. Different flexibility and tradeoff options to achieve real-time guarantees should be provided in a modularized manner to enable tradeoffs between execution efficiency and timing predictability. The success of this project will provide a comprehensive view of the landscape of design, analysis, and optimization options for timing properties in cyber-physical real-time systems. Advanced optimization and analytical frameworks based on the formal properties of scheduling algorithms and schedulability analysis will serve as new ingredients for designing predictable cyber-physical systems, which will trigger a revolution of computer architectures, system modeling, communication mechanisms, and synchronization designs in the near future. The results will bring a new design process to further allow control designers and system integrators in cyber-physical real-time systems to jointly explore different configurations of controllers, computation, and communication parameters for designing timing predictable cyber-physical system applications.Status
SIGNEDCall topic
ERC-2019-COGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)