Summary
David against Goliath: Could small consumers of electricity compete in the wholesale markets on equal footing with the other market agents? Yes, they can and FlexAnalytics will show how.
Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/755705 |
Start date: | 01-02-2018 |
End date: | 31-01-2024 |
Total budget - Public funding: | 1 203 125,00 Euro - 1 203 125,00 Euro |
Cordis data
Original description
David against Goliath: Could small consumers of electricity compete in the wholesale markets on equal footing with the other market agents? Yes, they can and FlexAnalytics will show how.Activating the demand response, although a major challenge, may also bring tremendous benefits to society, with potential cost savings in the billions of euros. This project will exploit methods of inverse problems, multi-level programming and machine learning to develop a pioneering system that enables the active participation of a group of price-responsive consumers of electricity in the wholesale electricity markets. Through this, they will be able to make the most out of their flexible consumption. FlexAnalytics proposes a generalized scheme for so-called inverse optimization that materializes into a novel data-driven approach to the market bidding problem that, unlike existing approaches, combines the tasks of forecasting, model formulation and estimation, and decision-making in an original unified theoretical framework. The project will also address big-data challenges, as the proposed system will leverage weather, market, and demand information to capture the many factors that may affect the price-response of a pool of flexible consumers. On a fundamental level, FlexAnalytics will produce a novel mathematical framework for data-driven decision making. On a practical level, FlexAnalytics will show that this framework can facilitate the best use of a large amount and a wide variety of data to efficiently operate the sustainable energy systems of the future.
Status
SIGNEDCall topic
ERC-2017-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)