ProtMechanics-Live | Uncovering Protein Mechanics in Physiology and Disease

Summary
Protein mechanics is a key contributor to the form and function of biological systems by mechanisms that are just starting to be unraveled. An ensuing hypothesis is that alteration of protein mechanics can trigger disease, particularly in mechanical conditions such as cardiomyopathies in which primordial underlying molecular mechanisms remain elusive. Although tempting, this possibility has not been tested due to the absence of methods that can modulate the mechanics of proteins in vivo. My proposal aims to overcome technical barriers to scientific progress by establishing manipulation of protein mechanics in living cells and animals as a new research field. In aim 1, we will address current technological limitations through the generation of genetic, protein-engineering-based mechanical loss- and gain-of-function models to interfere acutely and reversibly with protein mechanics in living systems (mLOF and mGOF, respectively). We will apply these first-of-their-kind tools to the giant protein titin, a major contributor to the force-generating and sensing properties of cardiomyocytes with strong links with heart disease, and a workhorse protein that has been instrumental in the past to understand the biophysics of polypeptides under force. In aim 2, we will exploit cellular mLOF and mGOF to define how perturbations of titin mechanics result in altered cardiomyocyte force generation, mechanosensing, mechanotransduction, differentiation and proliferation. Leveraging on our cell studies, in aim 3 we will use murine mLOF and mGOF to shed light into the contribution of titin mechanics to the onset and progression of genetic and acquired cardiomyopathy. ProtMechanics-Live builds on our unique expertise in protein mechanics and engineering, biophysics, biochemistry and cardiovascular biology to enable investigation of mechanical proteins in their functionally relevant, physiological context
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101002927
Start date: 01-06-2021
End date: 31-05-2026
Total budget - Public funding: 2 000 000,00 Euro - 2 000 000,00 Euro
Cordis data

Original description

Protein mechanics is a key contributor to the form and function of biological systems by mechanisms that are just starting to be unraveled. An ensuing hypothesis is that alteration of protein mechanics can trigger disease, particularly in mechanical conditions such as cardiomyopathies in which primordial underlying molecular mechanisms remain elusive. Although tempting, this possibility has not been tested due to the absence of methods that can modulate the mechanics of proteins in vivo. My proposal aims to overcome technical barriers to scientific progress by establishing manipulation of protein mechanics in living cells and animals as a new research field. In aim 1, we will address current technological limitations through the generation of genetic, protein-engineering-based mechanical loss- and gain-of-function models to interfere acutely and reversibly with protein mechanics in living systems (mLOF and mGOF, respectively). We will apply these first-of-their-kind tools to the giant protein titin, a major contributor to the force-generating and sensing properties of cardiomyocytes with strong links with heart disease, and a workhorse protein that has been instrumental in the past to understand the biophysics of polypeptides under force. In aim 2, we will exploit cellular mLOF and mGOF to define how perturbations of titin mechanics result in altered cardiomyocyte force generation, mechanosensing, mechanotransduction, differentiation and proliferation. Leveraging on our cell studies, in aim 3 we will use murine mLOF and mGOF to shed light into the contribution of titin mechanics to the onset and progression of genetic and acquired cardiomyopathy. ProtMechanics-Live builds on our unique expertise in protein mechanics and engineering, biophysics, biochemistry and cardiovascular biology to enable investigation of mechanical proteins in their functionally relevant, physiological context

Status

SIGNED

Call topic

ERC-2020-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-COG ERC CONSOLIDATOR GRANTS