BacNanoMachine | Reconstructing the coordinated self-assembly of a bacterial nanomachine

Summary
Life has evolved diverse protein machines and bacteria provide many fascinating examples. Despite being unicellular organisms of relatively small size, bacteria produce sophisticated nanomachines with a high degree of self-organization. The motility organelle of bacteria, the flagellum, is a prime example of complex bacterial nanomachines. Flagella are by far the most prominent extracellular structures known in bacteria and made through self-assembly of several dozen different kinds of proteins and thus represents an ideal model system to study sub-cellular compartmentalization and self-organization. The flagellum can function as a macromolecular motility machine only if its many building blocks assemble in a coordinated manner. However, previous studies have focused on phenotypic and genetic analyses, or the characterization of isolated sub-components. Crucially, how bacteria orchestrate the many different cellular processes in time and space in order to construct a functional motility organelle remains enigmatic. The present proposal constitutes a comprehensive research program with the aim to obtain a holistic understanding of the underlying principles that allow bacteria to control and coordinate the simultaneous self-assembly processes of several multi-component nanomachines within a single cell. Towards this goal, we will combine for the first time the visualization of the dynamic self-assembly of individual flagella with quantitative single-cell gene expression analyses, re-engineering of the genetic network and biophysical modeling in order to develop a biophysical model of flagella self-assembly. This novel, integrative approach will allow us to move beyond the classical, descriptive characterization of protein complexes towards an engineering-type understanding of the extraordinarily robust and coordinated assembly of a multi-component molecular machine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/864971
Start date: 01-10-2020
End date: 30-09-2026
Total budget - Public funding: 1 934 950,00 Euro - 1 934 950,00 Euro
Cordis data

Original description

Life has evolved diverse protein machines and bacteria provide many fascinating examples. Despite being unicellular organisms of relatively small size, bacteria produce sophisticated nanomachines with a high degree of self-organization. The motility organelle of bacteria, the flagellum, is a prime example of complex bacterial nanomachines. Flagella are by far the most prominent extracellular structures known in bacteria and made through self-assembly of several dozen different kinds of proteins and thus represents an ideal model system to study sub-cellular compartmentalization and self-organization. The flagellum can function as a macromolecular motility machine only if its many building blocks assemble in a coordinated manner. However, previous studies have focused on phenotypic and genetic analyses, or the characterization of isolated sub-components. Crucially, how bacteria orchestrate the many different cellular processes in time and space in order to construct a functional motility organelle remains enigmatic. The present proposal constitutes a comprehensive research program with the aim to obtain a holistic understanding of the underlying principles that allow bacteria to control and coordinate the simultaneous self-assembly processes of several multi-component nanomachines within a single cell. Towards this goal, we will combine for the first time the visualization of the dynamic self-assembly of individual flagella with quantitative single-cell gene expression analyses, re-engineering of the genetic network and biophysical modeling in order to develop a biophysical model of flagella self-assembly. This novel, integrative approach will allow us to move beyond the classical, descriptive characterization of protein complexes towards an engineering-type understanding of the extraordinarily robust and coordinated assembly of a multi-component molecular machine.

Status

SIGNED

Call topic

ERC-2019-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-COG