STIMUNO | Searching for novel strategies improving cancer immunotherapy

Summary
The main goal of this project is to explore new fundamental pathways involved in the regulation of antitumor immune response. Since the immunosuppressive tumor microenvironment constitutes a key barrier to effective immunotherapy, our predominant ambition is to characterize novel, hitherto unknown metabolic changes that can support the survival of tumor cells and the escape from the immune surveillance.
We have recently discovered a new metabolite within tumor microenvironment with a robust ability to inhibit the activity of immune cells and their potential to kill target tumor cells. Within the project, we plan to corroborate on our preliminary findings in order to establish the role of this factor in mitigating antitumor immune response. To this end, we will determine the level of its production within tumors in murine models. Moreover, we will relate these findings to human data by analysing the immune milieu and the expression of enzymes involved in generation of this metabolic agent in a cohort of cancer patients. We will also investigate the mechanisms by which this factor could perturb the functions of tumor-infiltrating effector cells.
Finally, we aspire to use the knowledge gained during the implementation of this project to propose innovative therapeutic solutions. Specifically, we will investigate whether and how the inhibition of selected enzymes involved in the generation of this new metabolic checkpoint can impact on the efficacy of immunotherapeutic agents, including immune checkpoint inhibitors, arginase inhibitors as well as adoptive therapy with CAR-T cells and CAR-NK cells. We strongly believe that by achieving the goals of our project we will make a significant step forward in order to develop and to design cutting-edge therapeutic strategies. These compelling solutions would further improve the efficacy of tumor immunotherapy, thus contributing to a breakthrough advance in cancer treatment.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/805038
Start date: 01-03-2019
End date: 28-02-2025
Total budget - Public funding: 1 498 750,00 Euro - 1 498 750,00 Euro
Cordis data

Original description

The main goal of this project is to explore new fundamental pathways involved in the regulation of antitumor immune response. Since the immunosuppressive tumor microenvironment constitutes a key barrier to effective immunotherapy, our predominant ambition is to characterize novel, hitherto unknown metabolic changes that can support the survival of tumor cells and the escape from the immune surveillance.
We have recently discovered a new metabolite within tumor microenvironment with a robust ability to inhibit the activity of immune cells and their potential to kill target tumor cells. Within the project, we plan to corroborate on our preliminary findings in order to establish the role of this factor in mitigating antitumor immune response. To this end, we will determine the level of its production within tumors in murine models. Moreover, we will relate these findings to human data by analysing the immune milieu and the expression of enzymes involved in generation of this metabolic agent in a cohort of cancer patients. We will also investigate the mechanisms by which this factor could perturb the functions of tumor-infiltrating effector cells.
Finally, we aspire to use the knowledge gained during the implementation of this project to propose innovative therapeutic solutions. Specifically, we will investigate whether and how the inhibition of selected enzymes involved in the generation of this new metabolic checkpoint can impact on the efficacy of immunotherapeutic agents, including immune checkpoint inhibitors, arginase inhibitors as well as adoptive therapy with CAR-T cells and CAR-NK cells. We strongly believe that by achieving the goals of our project we will make a significant step forward in order to develop and to design cutting-edge therapeutic strategies. These compelling solutions would further improve the efficacy of tumor immunotherapy, thus contributing to a breakthrough advance in cancer treatment.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG