MAJORIS | Majoration-Minimization algorithms for Image Processing

Summary
Mathematical optimization is the key to solving many problems in science, based on the observation that physical systems obey a general principle of least action. While some problems can be solved analytically, many more can only be solved via numerical algorithms. Research in this domain has proved essential over many years. In addition, science in general is changing. Increasingly, in biology, medicine, astronomy, chemistry, physics, large amounts of data are collected by constantly improving signal and image acquisition devices, that must be analyzed by sophisticated optimization tools. In this proposal, we consider handling optimization problems with large datasets. This means minimizing a cost function with a complex structure and many variables. The computational load for solving these problems is too great for even state-of-the-art algorithms. Thus, only relatively rudimentary data processing techniques are employed, reducing the quality of the results and limiting the outcomes that can be achieved via these novel instruments. New algorithms must be designed with computational scalability, robustness and versatility in mind.
In this context, Majorization-Minimization (MM) approaches have a crucial role to play. They consist of a class of efficient and effective optimization algorithms that benefit from solid theoretical foundations. The MAJORIS project aims at proposing a breakthrough in MM algorithms, so that they remain efficient when dealing with big data. I propose to tackle several challenging questions concerning algorithm design. These include acceleration strategies, convergence analysis with complex costs and inexact schemes. I will also tackle practical, massively parallel and distributed architecture implementations. Three specific applications are targeted: super-resolution in multiphoton microscopy in biology; on-the-fly reconstruction for 3D breast tomosynthesis in medical imaging; and mass spectrometry data processing in chemistry.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/850925
Start date: 01-01-2020
End date: 30-06-2025
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Mathematical optimization is the key to solving many problems in science, based on the observation that physical systems obey a general principle of least action. While some problems can be solved analytically, many more can only be solved via numerical algorithms. Research in this domain has proved essential over many years. In addition, science in general is changing. Increasingly, in biology, medicine, astronomy, chemistry, physics, large amounts of data are collected by constantly improving signal and image acquisition devices, that must be analyzed by sophisticated optimization tools. In this proposal, we consider handling optimization problems with large datasets. This means minimizing a cost function with a complex structure and many variables. The computational load for solving these problems is too great for even state-of-the-art algorithms. Thus, only relatively rudimentary data processing techniques are employed, reducing the quality of the results and limiting the outcomes that can be achieved via these novel instruments. New algorithms must be designed with computational scalability, robustness and versatility in mind.
In this context, Majorization-Minimization (MM) approaches have a crucial role to play. They consist of a class of efficient and effective optimization algorithms that benefit from solid theoretical foundations. The MAJORIS project aims at proposing a breakthrough in MM algorithms, so that they remain efficient when dealing with big data. I propose to tackle several challenging questions concerning algorithm design. These include acceleration strategies, convergence analysis with complex costs and inexact schemes. I will also tackle practical, massively parallel and distributed architecture implementations. Three specific applications are targeted: super-resolution in multiphoton microscopy in biology; on-the-fly reconstruction for 3D breast tomosynthesis in medical imaging; and mass spectrometry data processing in chemistry.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG