SUPERSONIC | Supersonic material ablation at THz repetition rates for ultra-efficient laser micromachining

Summary
We have recently demonstrated a new laser-material processing regime, known as the ablation-cooled laser-material removal, which proved to be 10 times more efficient using 100 thousand times lower pulse energies than traditional ultrafast processing. We have recently demonstrated a new laser-material processing regime, known as the ablation-cooled laser-material removal, which proved to be 10 times more efficient using 100 thousand times lower pulse energies than traditional ultrafast processing. In this novel regime, the repetition rate of the laser pulses are increased to such high levels that the target material at laser focus does not have sufficient time to cool appreciably between subsequent pulses. The radical reduction of required pulse energy makes possible to build extremely low-cost ultrafast lasers using the parts used in mass-produced nanosecond fibre lasers. This project aims to demonstrate a laser prototype thats costs 10-times less than its ultrafast competitors, while simultaneously achieving 10-times higher throughput. The planned laser prototype will scale our top results attained at 100 GHz repetition rate up to ~1 THz, where our experiments and theoretical model herald the existence of the new regime of supersonic ablation. As the material is ablated, the remaining top surface of the target recedes from the laser beam at a speed given by the ablation depth per pulse times the repetition rate. Scaling from our existing results, we anticipate to exceed the speed of sound at ~1 THz repetition rates, where the efficiency is expected to increase and pulse energy requirements to decrease further. The results will be validated in collaboration with potential industrial customers. Commercialisation will be based on the value proposition of offering the excellent material processing qualities of ultrafast laser at nanosecond laser prices. These activities will be supported and guided by a comprehensive business model and market research to be undertaken.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/966846
Start date: 01-06-2021
End date: 30-11-2022
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

We have recently demonstrated a new laser-material processing regime, known as the ablation-cooled laser-material removal, which proved to be 10 times more efficient using 100 thousand times lower pulse energies than traditional ultrafast processing. We have recently demonstrated a new laser-material processing regime, known as the ablation-cooled laser-material removal, which proved to be 10 times more efficient using 100 thousand times lower pulse energies than traditional ultrafast processing. In this novel regime, the repetition rate of the laser pulses are increased to such high levels that the target material at laser focus does not have sufficient time to cool appreciably between subsequent pulses. The radical reduction of required pulse energy makes possible to build extremely low-cost ultrafast lasers using the parts used in mass-produced nanosecond fibre lasers. This project aims to demonstrate a laser prototype thats costs 10-times less than its ultrafast competitors, while simultaneously achieving 10-times higher throughput. The planned laser prototype will scale our top results attained at 100 GHz repetition rate up to ~1 THz, where our experiments and theoretical model herald the existence of the new regime of supersonic ablation. As the material is ablated, the remaining top surface of the target recedes from the laser beam at a speed given by the ablation depth per pulse times the repetition rate. Scaling from our existing results, we anticipate to exceed the speed of sound at ~1 THz repetition rates, where the efficiency is expected to increase and pulse energy requirements to decrease further. The results will be validated in collaboration with potential industrial customers. Commercialisation will be based on the value proposition of offering the excellent material processing qualities of ultrafast laser at nanosecond laser prices. These activities will be supported and guided by a comprehensive business model and market research to be undertaken.

Status

CLOSED

Call topic

ERC-2020-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-PoC