EPICLINES | Elucidating the causes and consequences of the global pattern of epigenetic variation in Arabidopsis thaliana

Summary
Epigenetics continues to fascinate, especially the notion that it blurs the line between “nature and nurture” and could make Lamarckian adaptation via the inheritance of acquired characteristics possible. That this is in principle possible is clear: in the model plant Arabidopsis thaliana (Thale cress), experimentally induced DNA methylation variation can be inherited and affect important traits. The question is whether this is important in nature. Recent studies of A. thaliana have revealed a pattern of correlation between levels of methylation and climate variables that strongly suggests that methylation is important in adaptation. However, somewhat paradoxically, the experiments also showed that much of the variation for this epigenetic trait appears to have a genetic rather than an epigenetic basis. This suggest that epigenetics may indeed be important for adaptation, but as part of a genetic mechanism that is currently not understood. The goal of this project is to determine whether the global pattern of methylation has a genetic or an epigenetic basis, and to use this information to elucidate the ultimate basis for the global pattern of variation: natural selection.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/789037
Start date: 01-06-2018
End date: 31-05-2024
Total budget - Public funding: 2 498 468,00 Euro - 2 498 468,00 Euro
Cordis data

Original description

Epigenetics continues to fascinate, especially the notion that it blurs the line between “nature and nurture” and could make Lamarckian adaptation via the inheritance of acquired characteristics possible. That this is in principle possible is clear: in the model plant Arabidopsis thaliana (Thale cress), experimentally induced DNA methylation variation can be inherited and affect important traits. The question is whether this is important in nature. Recent studies of A. thaliana have revealed a pattern of correlation between levels of methylation and climate variables that strongly suggests that methylation is important in adaptation. However, somewhat paradoxically, the experiments also showed that much of the variation for this epigenetic trait appears to have a genetic rather than an epigenetic basis. This suggest that epigenetics may indeed be important for adaptation, but as part of a genetic mechanism that is currently not understood. The goal of this project is to determine whether the global pattern of methylation has a genetic or an epigenetic basis, and to use this information to elucidate the ultimate basis for the global pattern of variation: natural selection.

Status

SIGNED

Call topic

ERC-2017-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-ADG