Summary
We propose an unprecedented class of soft, self-assembled and self-motile micro-machines. The combined qualities of active fluids and colloidal liquid crystals can be leveraged to design intrinsically out-of- equilibrium hierarchal structures, or ‘Living’ Colloidal Liquid Crystals [LC]2. The study of colloidal interactions and self-assembly in active nematics has yet to be considered and constitutes an unexplored and inter-disciplinary application of the emerging sciences of active matter and colloidal liquid crystals. Activity will endow dynamical multi-scale colloidal structures with autonomous functionality, including self-motility, self-revolution and dynamical self-transformations, which are exactly the characteristics one would desire for a first generation of autonomous components of micro-biomechanical systems and soft micro-machines. As hybrids between biological active fluids and man-made materials, [LC]2 structures represent an early foray into ‘living’ metamaterials, in which active self-assembly of simple components produces a rich diversity of behaviours and the potential for autonomously tunable material properties, mimicking biological complexity. In particular, we hypothesize self-assembled [LC]2 dimer turbines, colloidal flagella and ant-like group retrieval. These systems represent a fundamentally innovative concept that we propose to drive nanotechnology into a new future of soft materials that biomimetically self-assemble and autonomously enact functions. It is our multiscale coarse-grained simulations and expertise in flowing active nematic fluids that generates the opportunity for this unique line of research.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/851196 |
Start date: | 01-12-2019 |
End date: | 31-05-2025 |
Total budget - Public funding: | 1 402 345,00 Euro - 1 402 345,00 Euro |
Cordis data
Original description
We propose an unprecedented class of soft, self-assembled and self-motile micro-machines. The combined qualities of active fluids and colloidal liquid crystals can be leveraged to design intrinsically out-of- equilibrium hierarchal structures, or ‘Living’ Colloidal Liquid Crystals [LC]2. The study of colloidal interactions and self-assembly in active nematics has yet to be considered and constitutes an unexplored and inter-disciplinary application of the emerging sciences of active matter and colloidal liquid crystals. Activity will endow dynamical multi-scale colloidal structures with autonomous functionality, including self-motility, self-revolution and dynamical self-transformations, which are exactly the characteristics one would desire for a first generation of autonomous components of micro-biomechanical systems and soft micro-machines. As hybrids between biological active fluids and man-made materials, [LC]2 structures represent an early foray into ‘living’ metamaterials, in which active self-assembly of simple components produces a rich diversity of behaviours and the potential for autonomously tunable material properties, mimicking biological complexity. In particular, we hypothesize self-assembled [LC]2 dimer turbines, colloidal flagella and ant-like group retrieval. These systems represent a fundamentally innovative concept that we propose to drive nanotechnology into a new future of soft materials that biomimetically self-assemble and autonomously enact functions. It is our multiscale coarse-grained simulations and expertise in flowing active nematic fluids that generates the opportunity for this unique line of research.Status
SIGNEDCall topic
ERC-2019-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)