Summary
Technology is continuously miniaturizing. As it reaches the nanoscale we face unique challenges, such as managing thermal. From the other direction, advances in the quantum physics of a few atoms, ions, and solid-state qubits mean that we increasingly wish to scale up quantum systems, or interface them with nanoscale devices.
Opto- and electro-mechanical (NEMS and MEMS) devices have been controlled at the quantum level in recent years, an amazing advance allowing even entanglement between light and mechanical motion. However, all such systems are plagued by unavoidable environmental contact, and energy dissipation through strain, limiting the potential of mechanical devices to participate in both classical and quantum technologies.
By levitating the mechanical element, these problems are overcome. LEVITEQ will, for the first time, cool the motion and rotation of tailor-made silicon particles, enabling full quantum level control. This ultra-low dissipation system offers exquisite force sensitivity, by driving the rotation of a levitated nanorod. LEVITEQ will pioneer the control of nanoparticles by electronic circuits, allowing simple technological integration in a room temperature environment. This all-electrical system will challenge existing quartz crystal oscillator technology.
LEVITEQ will explore new regimes of physics, by working in extreme vacuum, elucidating thermodynamics on the nanoscale. This research will pave the way for a levitated quantum object acting as a node in a quantum network, for coherent signal storage and conversion.
Opto- and electro-mechanical (NEMS and MEMS) devices have been controlled at the quantum level in recent years, an amazing advance allowing even entanglement between light and mechanical motion. However, all such systems are plagued by unavoidable environmental contact, and energy dissipation through strain, limiting the potential of mechanical devices to participate in both classical and quantum technologies.
By levitating the mechanical element, these problems are overcome. LEVITEQ will, for the first time, cool the motion and rotation of tailor-made silicon particles, enabling full quantum level control. This ultra-low dissipation system offers exquisite force sensitivity, by driving the rotation of a levitated nanorod. LEVITEQ will pioneer the control of nanoparticles by electronic circuits, allowing simple technological integration in a room temperature environment. This all-electrical system will challenge existing quartz crystal oscillator technology.
LEVITEQ will explore new regimes of physics, by working in extreme vacuum, elucidating thermodynamics on the nanoscale. This research will pave the way for a levitated quantum object acting as a node in a quantum network, for coherent signal storage and conversion.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/803277 |
Start date: | 01-02-2019 |
End date: | 31-01-2025 |
Total budget - Public funding: | 1 498 018,00 Euro - 1 498 018,00 Euro |
Cordis data
Original description
Technology is continuously miniaturizing. As it reaches the nanoscale we face unique challenges, such as managing thermal. From the other direction, advances in the quantum physics of a few atoms, ions, and solid-state qubits mean that we increasingly wish to scale up quantum systems, or interface them with nanoscale devices.Opto- and electro-mechanical (NEMS and MEMS) devices have been controlled at the quantum level in recent years, an amazing advance allowing even entanglement between light and mechanical motion. However, all such systems are plagued by unavoidable environmental contact, and energy dissipation through strain, limiting the potential of mechanical devices to participate in both classical and quantum technologies.
By levitating the mechanical element, these problems are overcome. LEVITEQ will, for the first time, cool the motion and rotation of tailor-made silicon particles, enabling full quantum level control. This ultra-low dissipation system offers exquisite force sensitivity, by driving the rotation of a levitated nanorod. LEVITEQ will pioneer the control of nanoparticles by electronic circuits, allowing simple technological integration in a room temperature environment. This all-electrical system will challenge existing quartz crystal oscillator technology.
LEVITEQ will explore new regimes of physics, by working in extreme vacuum, elucidating thermodynamics on the nanoscale. This research will pave the way for a levitated quantum object acting as a node in a quantum network, for coherent signal storage and conversion.
Status
SIGNEDCall topic
ERC-2018-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)