IntratumoralNiche | Defining heterocellular signalling within the intratumoral stem cell niche of colorectal cancer

Summary
Purpose: Cells in a tumor are highly heterogeneous. The role and consequence of having multiple cell types within a cancer is mostly centered towards the function of cancer stem cells (CSCs) since they are the driving forces of tumor growth. However, the exact signaling cues that support CSC function remain to be understood. For instance, what are the roles of immediate descendant tumor cells in relation to CSC support? Do colorectal tumors make their own niche?

Preliminary data: To study communication between different cell types (heterocellular signaling) in human colorectal cancers (CRCs), my lab developed movieSTAR technology to mark CSCs in patient-derived CRC organoids (PDOs) for high-resolution live imaging of their dynamics and behavior. Although niche factor dependency decreases along the adenoma-carcinoma transition, we identified a strong interdependency between CSCs and other tumor cells in colorectal PDOs of malignant nature.

Hypothesis: We hypothesize a continuous existence of an intratumoral stem cell niche that remains essential for tumor growth and metastasis formation. Which types of heterocellular signaling support CSC function, especially at malignant stages, is unknown.

Approach: This project aims to define heterocellular signaling between CSCs and intratumoral niche cells. Therefore, I) we will combine our expertise in human organoid technology for in-depth characterization of the nature of heterocellular communication within the intratumoral niche, II) high-resolution live imaging of PDOs to interrogate heterogeneity of signaling activities at cellular resolution and in real-time, as well as III) in vivo mouse models for validation and further studies of essential intratumoral signaling pathways.

Innovation: Our integrative use of novel approaches will provide comprehensive insight into intratumoral niche function during tumorigenesis, establishing novel technologies for future cancer research and new concepts to improve cancer therapy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/803608
Start date: 01-01-2019
End date: 31-12-2023
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

Purpose: Cells in a tumor are highly heterogeneous. The role and consequence of having multiple cell types within a cancer is mostly centered towards the function of cancer stem cells (CSCs) since they are the driving forces of tumor growth. However, the exact signaling cues that support CSC function remain to be understood. For instance, what are the roles of immediate descendant tumor cells in relation to CSC support? Do colorectal tumors make their own niche?

Preliminary data: To study communication between different cell types (heterocellular signaling) in human colorectal cancers (CRCs), my lab developed movieSTAR technology to mark CSCs in patient-derived CRC organoids (PDOs) for high-resolution live imaging of their dynamics and behavior. Although niche factor dependency decreases along the adenoma-carcinoma transition, we identified a strong interdependency between CSCs and other tumor cells in colorectal PDOs of malignant nature.

Hypothesis: We hypothesize a continuous existence of an intratumoral stem cell niche that remains essential for tumor growth and metastasis formation. Which types of heterocellular signaling support CSC function, especially at malignant stages, is unknown.

Approach: This project aims to define heterocellular signaling between CSCs and intratumoral niche cells. Therefore, I) we will combine our expertise in human organoid technology for in-depth characterization of the nature of heterocellular communication within the intratumoral niche, II) high-resolution live imaging of PDOs to interrogate heterogeneity of signaling activities at cellular resolution and in real-time, as well as III) in vivo mouse models for validation and further studies of essential intratumoral signaling pathways.

Innovation: Our integrative use of novel approaches will provide comprehensive insight into intratumoral niche function during tumorigenesis, establishing novel technologies for future cancer research and new concepts to improve cancer therapy.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG