Summary
The use of light to trigger and control radical polymerisation is a powerful strategy for rational polymer synthesis and advanced materials. Photoinitiated polymerisation is today widely used in industry for several applications. Essential for the continued progress of the field is the discoveries of novel photoinitiators endowed with tailored properties, such as high activity at ambient temperature and the possibility to use visible light instead of UV irradiation to produce radicals in high quantum yields. Using visible light is essential for domestic applications, as there would be no hazards related to exposure to UV light.
Light-COAT aims at preparing new visible-light-activated photoinitiators and evaluate their potential for the formulation of domestic coating compositions. As part of the ERC-2015-CoG project CATA-LUX (681840), focused on developing photochemical synthetic methodologies, we recently identified a family of visible-light-absorbing organic compounds with high potential to act as photoinitiators for polymer applications. These photoinitiators can be easily synthesised, are activated by weak light, including solar light or simple light-emitting-diodes, provide access to colourless polymeric materials, and have shown potential for applications in domestic indoor/outdoor coatings. These unique features make this novel family of photoinitiators suitable to enhance convenience in use (reduced drying time and improved weatherproof feature), offering a strong opportunity to improve domestic coating formulations.
Light-COAT aims at preparing new visible-light-activated photoinitiators and evaluate their potential for the formulation of domestic coating compositions. As part of the ERC-2015-CoG project CATA-LUX (681840), focused on developing photochemical synthetic methodologies, we recently identified a family of visible-light-absorbing organic compounds with high potential to act as photoinitiators for polymer applications. These photoinitiators can be easily synthesised, are activated by weak light, including solar light or simple light-emitting-diodes, provide access to colourless polymeric materials, and have shown potential for applications in domestic indoor/outdoor coatings. These unique features make this novel family of photoinitiators suitable to enhance convenience in use (reduced drying time and improved weatherproof feature), offering a strong opportunity to improve domestic coating formulations.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/899541 |
Start date: | 01-07-2020 |
End date: | 31-12-2021 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
The use of light to trigger and control radical polymerisation is a powerful strategy for rational polymer synthesis and advanced materials. Photoinitiated polymerisation is today widely used in industry for several applications. Essential for the continued progress of the field is the discoveries of novel photoinitiators endowed with tailored properties, such as high activity at ambient temperature and the possibility to use visible light instead of UV irradiation to produce radicals in high quantum yields. Using visible light is essential for domestic applications, as there would be no hazards related to exposure to UV light.Light-COAT aims at preparing new visible-light-activated photoinitiators and evaluate their potential for the formulation of domestic coating compositions. As part of the ERC-2015-CoG project CATA-LUX (681840), focused on developing photochemical synthetic methodologies, we recently identified a family of visible-light-absorbing organic compounds with high potential to act as photoinitiators for polymer applications. These photoinitiators can be easily synthesised, are activated by weak light, including solar light or simple light-emitting-diodes, provide access to colourless polymeric materials, and have shown potential for applications in domestic indoor/outdoor coatings. These unique features make this novel family of photoinitiators suitable to enhance convenience in use (reduced drying time and improved weatherproof feature), offering a strong opportunity to improve domestic coating formulations.
Status
CLOSEDCall topic
ERC-2019-POCUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)