Summary
The origin of the matter-antimatter asymmetry of the universe and the nature of dark matter are among the most fundamental and challenging questions in physics. Their undeniable importance has placed them in the forefront of the experimental and theoretical research in particle physics, cosmology and astrophysics. Our experimental probes are now at the outset of exploring the multi-TeV energy scale. To fully exploit the experimental effort, to design effective search strategies and correctly interpret the experimental results, we must develop reliable theoretical understanding of the plausible dynamics at this scale.
The TeV scale is a new threshold. In this regime, the interactions hypothesised in a variety of well-motivated theories manifest as long-range. This is true for the most widely studied particle-physics scenario for dark matter, particles coupled to the Weak interactions of the Standard Model, as well as many other models. Moreover, many theories of matter-antimatter asymmetry generation invoke heavy particles that couple to lighter force mediators.
Long-range interactions imply very different dynamics than the contact-type interactions most commonly considered in the past. They give rise to non-perturbative effects, with the most prominent being the existence of bound states. Such effects can change the experimental signatures very significantly. CosmoChart will comprehensively investigate the implications of long-range interactions along two directions:
I. The dark matter thermal decoupling in the early universe and indirect detection.
II. The particle-antiparticle asymmetry generation and washout.
The results will have implications for most experimental probes. As the long-range dynamics becomes increasingly more important at higher scales, the investigations of CosmoChart will chart particle cosmology at the TeV scale and beyond.
The TeV scale is a new threshold. In this regime, the interactions hypothesised in a variety of well-motivated theories manifest as long-range. This is true for the most widely studied particle-physics scenario for dark matter, particles coupled to the Weak interactions of the Standard Model, as well as many other models. Moreover, many theories of matter-antimatter asymmetry generation invoke heavy particles that couple to lighter force mediators.
Long-range interactions imply very different dynamics than the contact-type interactions most commonly considered in the past. They give rise to non-perturbative effects, with the most prominent being the existence of bound states. Such effects can change the experimental signatures very significantly. CosmoChart will comprehensively investigate the implications of long-range interactions along two directions:
I. The dark matter thermal decoupling in the early universe and indirect detection.
II. The particle-antiparticle asymmetry generation and washout.
The results will have implications for most experimental probes. As the long-range dynamics becomes increasingly more important at higher scales, the investigations of CosmoChart will chart particle cosmology at the TeV scale and beyond.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101002846 |
Start date: | 01-09-2021 |
End date: | 31-08-2026 |
Total budget - Public funding: | 1 998 437,00 Euro - 1 998 437,00 Euro |
Cordis data
Original description
The origin of the matter-antimatter asymmetry of the universe and the nature of dark matter are among the most fundamental and challenging questions in physics. Their undeniable importance has placed them in the forefront of the experimental and theoretical research in particle physics, cosmology and astrophysics. Our experimental probes are now at the outset of exploring the multi-TeV energy scale. To fully exploit the experimental effort, to design effective search strategies and correctly interpret the experimental results, we must develop reliable theoretical understanding of the plausible dynamics at this scale.The TeV scale is a new threshold. In this regime, the interactions hypothesised in a variety of well-motivated theories manifest as long-range. This is true for the most widely studied particle-physics scenario for dark matter, particles coupled to the Weak interactions of the Standard Model, as well as many other models. Moreover, many theories of matter-antimatter asymmetry generation invoke heavy particles that couple to lighter force mediators.
Long-range interactions imply very different dynamics than the contact-type interactions most commonly considered in the past. They give rise to non-perturbative effects, with the most prominent being the existence of bound states. Such effects can change the experimental signatures very significantly. CosmoChart will comprehensively investigate the implications of long-range interactions along two directions:
I. The dark matter thermal decoupling in the early universe and indirect detection.
II. The particle-antiparticle asymmetry generation and washout.
The results will have implications for most experimental probes. As the long-range dynamics becomes increasingly more important at higher scales, the investigations of CosmoChart will chart particle cosmology at the TeV scale and beyond.
Status
SIGNEDCall topic
ERC-2020-COGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)