PedSarc | Targeting genetic and epigenetic mechanisms in pediatric sarcomas.

Summary
Sarcomas are an extremely heterogeneous group of mesenchymal tumors that arise in a multitude of tissues from many different cell types. Several genetic events have been identified in different sarcoma sub-types, but very few models were developed to study their role in tumorigenesis aiming at exploiting them as therapeutic vulnerabilities. As a result, the treatment of sarcoma has extremely limited advancement in therapeutic options compared to other cancers. Therefore, the generation of faithful in vitro and in vivo models for sarcoma research is urgently needed to provide insights into the pathobiology of these tumors and discover novel vulnerabilities in these lethal but yet understudied disease. Many types of soft tissue sarcomas arising in children and young adults have a unifying underlying genetic mechanism, where chromosomal translocations generate fusion oncoproteins that serve as drivers of the disease. Exploiting this genetic simplicity provides an exceptional opportunity to develop effective and specific therapies. My past research has applied cutting edge technology to define epigenetic vulnerabilities associated with the SS18-SSX gene fusion, the defining event in synovial sarcoma (one subgroup of pediatric sarcomas), and to study its chromatin occupancy genome-wide. In this proposal my team will combine a toolbox consisting of CRISPR/Cas9, RNAi technology and expertise in mouse models to systematically elucidate key genetic and epigenetic mechanisms in the pathobiology of pediatric sarcomas. This work will help to understand key players in epigenetic deregulation in pediatric sarcomas, generate new sarcoma models to assist clinical translation, and identify new therapeutic targets for these deadly diseases.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/805338
Start date: 01-01-2019
End date: 31-12-2024
Total budget - Public funding: 1 499 375,00 Euro - 1 499 375,00 Euro
Cordis data

Original description

Sarcomas are an extremely heterogeneous group of mesenchymal tumors that arise in a multitude of tissues from many different cell types. Several genetic events have been identified in different sarcoma sub-types, but very few models were developed to study their role in tumorigenesis aiming at exploiting them as therapeutic vulnerabilities. As a result, the treatment of sarcoma has extremely limited advancement in therapeutic options compared to other cancers. Therefore, the generation of faithful in vitro and in vivo models for sarcoma research is urgently needed to provide insights into the pathobiology of these tumors and discover novel vulnerabilities in these lethal but yet understudied disease. Many types of soft tissue sarcomas arising in children and young adults have a unifying underlying genetic mechanism, where chromosomal translocations generate fusion oncoproteins that serve as drivers of the disease. Exploiting this genetic simplicity provides an exceptional opportunity to develop effective and specific therapies. My past research has applied cutting edge technology to define epigenetic vulnerabilities associated with the SS18-SSX gene fusion, the defining event in synovial sarcoma (one subgroup of pediatric sarcomas), and to study its chromatin occupancy genome-wide. In this proposal my team will combine a toolbox consisting of CRISPR/Cas9, RNAi technology and expertise in mouse models to systematically elucidate key genetic and epigenetic mechanisms in the pathobiology of pediatric sarcomas. This work will help to understand key players in epigenetic deregulation in pediatric sarcomas, generate new sarcoma models to assist clinical translation, and identify new therapeutic targets for these deadly diseases.

Status

SIGNED

Call topic

ERC-2018-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-STG