Summary
Introduction: The ability of a cancer cell to invade into the surrounding tissue is the main feature of malignant cancer progression. Diffuse Intrinsic Pontine Glioma (DIPG) is a paediatric high-grade brain tumour with no chance of survival due to its highly invasive nature.
Goal: By combining state-of-the-art imaging and transcriptomics, we aim to identify and target the key mechanisms driving the highly invasive growth of DIPG.
Technology advances: Two unique single cell resolution imaging techniques that we have recently developed will be implemented: Large-scale Single-cell Resolution 3D imaging (LSR-3D) that allows visualization of complete tumour specimens and intravital microscopy using a cranial imaging window that allows imaging of tumour cell behaviour in living mice. In addition, we will apply a technique of live imaging Patch-seq to perform behaviour studies together with single cell RNA profiling.
Expected results: Using a glioma murine model in which the disease is induced in neonates and a new embryonic model based on in utero electroporation, we expect to gain knowledge on the progression of DIPG in maturing brain. LSR-3D imaging on human and murine specimens will provide insight into the cellular tumour composition and its integration in the neuroglial network. With intravital imaging, we will characterize invasive cancer cell behaviour and functional connections with healthy brain cells. In combination with Patch-seq, we will identify transcriptional program(s) specific to invasive behaviour. Altogether, we expect to identify novel key players in cancer invasion and assess their potential to prevent DIPG progression.
Future perspective: With the studies proposed, we will gain fundamental insights into the cancer cell invasion mechanisms that govern DIPG which may provide new potential therapeutic target(s) for this dismal disease. Overall, the knowledge and advanced technologies obtained here will be of great value for the tumour biology field.
Goal: By combining state-of-the-art imaging and transcriptomics, we aim to identify and target the key mechanisms driving the highly invasive growth of DIPG.
Technology advances: Two unique single cell resolution imaging techniques that we have recently developed will be implemented: Large-scale Single-cell Resolution 3D imaging (LSR-3D) that allows visualization of complete tumour specimens and intravital microscopy using a cranial imaging window that allows imaging of tumour cell behaviour in living mice. In addition, we will apply a technique of live imaging Patch-seq to perform behaviour studies together with single cell RNA profiling.
Expected results: Using a glioma murine model in which the disease is induced in neonates and a new embryonic model based on in utero electroporation, we expect to gain knowledge on the progression of DIPG in maturing brain. LSR-3D imaging on human and murine specimens will provide insight into the cellular tumour composition and its integration in the neuroglial network. With intravital imaging, we will characterize invasive cancer cell behaviour and functional connections with healthy brain cells. In combination with Patch-seq, we will identify transcriptional program(s) specific to invasive behaviour. Altogether, we expect to identify novel key players in cancer invasion and assess their potential to prevent DIPG progression.
Future perspective: With the studies proposed, we will gain fundamental insights into the cancer cell invasion mechanisms that govern DIPG which may provide new potential therapeutic target(s) for this dismal disease. Overall, the knowledge and advanced technologies obtained here will be of great value for the tumour biology field.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/804412 |
Start date: | 01-01-2019 |
End date: | 31-12-2023 |
Total budget - Public funding: | 1 500 000,00 Euro - 1 500 000,00 Euro |
Cordis data
Original description
Introduction: The ability of a cancer cell to invade into the surrounding tissue is the main feature of malignant cancer progression. Diffuse Intrinsic Pontine Glioma (DIPG) is a paediatric high-grade brain tumour with no chance of survival due to its highly invasive nature.Goal: By combining state-of-the-art imaging and transcriptomics, we aim to identify and target the key mechanisms driving the highly invasive growth of DIPG.
Technology advances: Two unique single cell resolution imaging techniques that we have recently developed will be implemented: Large-scale Single-cell Resolution 3D imaging (LSR-3D) that allows visualization of complete tumour specimens and intravital microscopy using a cranial imaging window that allows imaging of tumour cell behaviour in living mice. In addition, we will apply a technique of live imaging Patch-seq to perform behaviour studies together with single cell RNA profiling.
Expected results: Using a glioma murine model in which the disease is induced in neonates and a new embryonic model based on in utero electroporation, we expect to gain knowledge on the progression of DIPG in maturing brain. LSR-3D imaging on human and murine specimens will provide insight into the cellular tumour composition and its integration in the neuroglial network. With intravital imaging, we will characterize invasive cancer cell behaviour and functional connections with healthy brain cells. In combination with Patch-seq, we will identify transcriptional program(s) specific to invasive behaviour. Altogether, we expect to identify novel key players in cancer invasion and assess their potential to prevent DIPG progression.
Future perspective: With the studies proposed, we will gain fundamental insights into the cancer cell invasion mechanisms that govern DIPG which may provide new potential therapeutic target(s) for this dismal disease. Overall, the knowledge and advanced technologies obtained here will be of great value for the tumour biology field.
Status
SIGNEDCall topic
ERC-2018-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)