HADES | Benthic diagenesis and microbiology of hadal trenches

Summary
With this project, called HADES, we aim to provide the first detailed, combined analysis of benthic diagenesis and microbial ecology of some of the deepest oceanic trenches on Earth. We argue that deep trenches, some of the most remote, extreme, and scantly explored habitats on Earth, are hotspots of deposition and mineralization of organic material. With the development of novel autonomous in situ instrumentation to overcome large sampling artifacts from decompression, we will i) determine rates of benthic metabolism and the importance of the deep trenches for the marine carbon and nitrogen cycles, ii) explore the unique benthic microbial communities driving these processes, and iii) investigate the proposed great role of virus in regulating microbial performance and carbon cycling in hadal sediments. By comparing trenches from contrasting oceanic settings the project provides a completely novel general analysis of hadal biogeochemistry and the role of deep trenches in the oceans, as well as fundamental new insights into the composition and functioning of microbial communities at extreme pressure.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/669947
Start date: 01-01-2016
End date: 31-12-2021
Total budget - Public funding: 3 185 000,00 Euro - 3 185 000,00 Euro
Cordis data

Original description

With this project, called HADES, we aim to provide the first detailed, combined analysis of benthic diagenesis and microbial ecology of some of the deepest oceanic trenches on Earth. We argue that deep trenches, some of the most remote, extreme, and scantly explored habitats on Earth, are hotspots of deposition and mineralization of organic material. With the development of novel autonomous in situ instrumentation to overcome large sampling artifacts from decompression, we will i) determine rates of benthic metabolism and the importance of the deep trenches for the marine carbon and nitrogen cycles, ii) explore the unique benthic microbial communities driving these processes, and iii) investigate the proposed great role of virus in regulating microbial performance and carbon cycling in hadal sediments. By comparing trenches from contrasting oceanic settings the project provides a completely novel general analysis of hadal biogeochemistry and the role of deep trenches in the oceans, as well as fundamental new insights into the composition and functioning of microbial communities at extreme pressure.

Status

CLOSED

Call topic

ERC-ADG-2014

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2014
ERC-2014-ADG
ERC-ADG-2014 ERC Advanced Grant