OPERA | Road to Market for Fully Implantable Cochlear Implant: Phase 1

Summary
Today, congenital or acquired hearing loss affects around 6% of the world population (over 460 M people, of 7% are children) and presents significant impact on people’s social, emotional, and economic wellbeing. Sensorineural impairment, which represents the majority of the profound deafness, is caused from irreversible damage to cochlear hair cells rendering them non-functional/missing. It can be restored using cochlear implants (CIs), which are used to bypass the damaged hair cells and directly stimulate the auditory nerve by means of a cochlear electrode to repair hearing in people with severe-to-profound sensorineural hearing loss. CIs are used for more than 40 years and today implanted in around 420.000 individuals worldwide. However, conventional CIs have major drawbacks. OPERA, with its potential to eliminate these drawbacks, will be the first fully implantable, low-power, energy harvesting (self-powered), next generation CI mimicking the natural hearing mechanism of the ear. Thus, it is expected to give the user a more natural and clear sound. Moreover, being fully implanted, it will not suffer from mechanical damage risks or contact with water, and raise no aesthetic concerns by users. The system does not use magnets, eliminating the MRI limitation in all conventional implants. One of the most important features of OPERA is its novel battery charging method by which the device harvests energy through the vibration generated by sound waves, fed by a simple earplug connected to a tone generator. In OPERA project, we aim to; validate technical performance and functionalities compared with state-of-the-art systems; perform stakeholder analysis and determine the main requirements for clinical practice; validate the design choices against the regulatory requirements; validate the economic and societal benefits; carry out a freedom to operate analysis and protect the IP; consolidate the business model, set up the product value chain and prepare the business plan.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/957561
Start date: 01-09-2020
End date: 28-02-2022
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Today, congenital or acquired hearing loss affects around 6% of the world population (over 460 M people, of 7% are children) and presents significant impact on people’s social, emotional, and economic wellbeing. Sensorineural impairment, which represents the majority of the profound deafness, is caused from irreversible damage to cochlear hair cells rendering them non-functional/missing. It can be restored using cochlear implants (CIs), which are used to bypass the damaged hair cells and directly stimulate the auditory nerve by means of a cochlear electrode to repair hearing in people with severe-to-profound sensorineural hearing loss. CIs are used for more than 40 years and today implanted in around 420.000 individuals worldwide. However, conventional CIs have major drawbacks. OPERA, with its potential to eliminate these drawbacks, will be the first fully implantable, low-power, energy harvesting (self-powered), next generation CI mimicking the natural hearing mechanism of the ear. Thus, it is expected to give the user a more natural and clear sound. Moreover, being fully implanted, it will not suffer from mechanical damage risks or contact with water, and raise no aesthetic concerns by users. The system does not use magnets, eliminating the MRI limitation in all conventional implants. One of the most important features of OPERA is its novel battery charging method by which the device harvests energy through the vibration generated by sound waves, fed by a simple earplug connected to a tone generator. In OPERA project, we aim to; validate technical performance and functionalities compared with state-of-the-art systems; perform stakeholder analysis and determine the main requirements for clinical practice; validate the design choices against the regulatory requirements; validate the economic and societal benefits; carry out a freedom to operate analysis and protect the IP; consolidate the business model, set up the product value chain and prepare the business plan.

Status

CLOSED

Call topic

ERC-2020-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-PoC