AnalogCreate | Autonomous Creation of Analog Integrated Circuits based on Self-Learning of Design Expertise

Summary
Progress in semiconductor technology and in intelligent data processing are converging today, opening the door to countless smart ICT applications through the Cloud and Internet of Everything, to the people’s benefit in years to come. Applications that interact with the physical world (e.g. environmental sensing, healthcare, autonomous vehicles, etc.), also need analog integrated circuits in the cyber-physical or edge layer. But while digital circuits are largely synthesized automatically through software, the analog circuits are mainly still handcrafted in industry with low design productivity. This results in long and error-prone design cycles, and the high development costs jeopardize many potential new ICT applications from ever being realized (e.g. solutions for rare diseases). It becomes even more problematic when moving to advanced technologies below 16 nm CMOS, that come with way more design and layout rules to be dealt with. The showstopper for state-of-the-art analog synthesis tools is that they require design heuristics and constraints to be entered explicitly by designers in order to handle the humongous solution space and to steer the circuit and layout optimizations towards acceptable solutions. The proposed disruptively new approach is to use the self-learning capabilities of advanced machine learning algorithms to self-learn and then exploit the design expertise and constraints from the many available successfully completed designs. Also a true circuit topology synthesis approach will be developed to create a proper (possibly novel) schematic from the target specifications, as well as an innovative formal analog design verification approach based on Quick Error Detection. These innovations will enable for the first time ever to truly autonomously create analog circuits from specifications to fully verified layout without direct input from any designer in the loop, and therefore enable the affordable implementation of many promising ICT applications.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101019982
Start date: 01-09-2021
End date: 31-08-2026
Total budget - Public funding: 2 500 000,00 Euro - 2 500 000,00 Euro
Cordis data

Original description

Progress in semiconductor technology and in intelligent data processing are converging today, opening the door to countless smart ICT applications through the Cloud and Internet of Everything, to the people’s benefit in years to come. Applications that interact with the physical world (e.g. environmental sensing, healthcare, autonomous vehicles, etc.), also need analog integrated circuits in the cyber-physical or edge layer. But while digital circuits are largely synthesized automatically through software, the analog circuits are mainly still handcrafted in industry with low design productivity. This results in long and error-prone design cycles, and the high development costs jeopardize many potential new ICT applications from ever being realized (e.g. solutions for rare diseases). It becomes even more problematic when moving to advanced technologies below 16 nm CMOS, that come with way more design and layout rules to be dealt with. The showstopper for state-of-the-art analog synthesis tools is that they require design heuristics and constraints to be entered explicitly by designers in order to handle the humongous solution space and to steer the circuit and layout optimizations towards acceptable solutions. The proposed disruptively new approach is to use the self-learning capabilities of advanced machine learning algorithms to self-learn and then exploit the design expertise and constraints from the many available successfully completed designs. Also a true circuit topology synthesis approach will be developed to create a proper (possibly novel) schematic from the target specifications, as well as an innovative formal analog design verification approach based on Quick Error Detection. These innovations will enable for the first time ever to truly autonomously create analog circuits from specifications to fully verified layout without direct input from any designer in the loop, and therefore enable the affordable implementation of many promising ICT applications.

Status

SIGNED

Call topic

ERC-2020-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-ADG ERC ADVANCED GRANT