Summary
Circalunar clocks are endogenous biological clocks, which allow organisms to time development and reproduction to lunar phase. They are common in marine organisms, but their molecular basis is still entirely unknown. Candidate gene approaches have failed so far. In the marine midge Clunio marinus (Diptera: Chironomidae), I can elegantly overcome this problem by exploiting an array of local genetic adaptations in circalunar timing. Through evolutionary analysis, QTL mapping and genome screens my group currently produces evidence-based circalunar candidate genes without any need for prior knowledge or assumptions.
In this ERC proposal, I aim to take this work to the next level and identify the molecular and cellular basis of circalunar clocks. I will establish molecular tools for Clunio and use them to confirm and characterize circalunar clock candidate genes. Specifically, I aim to: (WP1) Establish genome editing and confirm candidate genes via knockout and allelic replacement. (WP2) Study gene expression modules across the lunar cycle and identify the transcriptional regulators that exert circalunar control on development and maturation. (WP3) Describe Clunio’s larval nervous system and trace circalunar clock sensory input pathways to their convergence point. This will identify the cellular substrate of the circalunar clock. (WP4) Settle the on-going debate on the role of circadian clocks in circalunar timing. I will particularly study the role of the famous period gene.
In the future, this molecular endeavour will also boost evolutionary work: Clunio will provide insights into fundamental questions, such as the role of genome architecture in local adaptation. But immediately, unravelling the molecular basis of circalunar clocks will be a breakthrough in chronobiology. It will inspire new ideas and experiments. Comparing circalunar to circadian clocks, we will for the first time be able to see basic principles in the molecular design of biological clocks.
In this ERC proposal, I aim to take this work to the next level and identify the molecular and cellular basis of circalunar clocks. I will establish molecular tools for Clunio and use them to confirm and characterize circalunar clock candidate genes. Specifically, I aim to: (WP1) Establish genome editing and confirm candidate genes via knockout and allelic replacement. (WP2) Study gene expression modules across the lunar cycle and identify the transcriptional regulators that exert circalunar control on development and maturation. (WP3) Describe Clunio’s larval nervous system and trace circalunar clock sensory input pathways to their convergence point. This will identify the cellular substrate of the circalunar clock. (WP4) Settle the on-going debate on the role of circadian clocks in circalunar timing. I will particularly study the role of the famous period gene.
In the future, this molecular endeavour will also boost evolutionary work: Clunio will provide insights into fundamental questions, such as the role of genome architecture in local adaptation. But immediately, unravelling the molecular basis of circalunar clocks will be a breakthrough in chronobiology. It will inspire new ideas and experiments. Comparing circalunar to circadian clocks, we will for the first time be able to see basic principles in the molecular design of biological clocks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/802923 |
Start date: | 01-01-2019 |
End date: | 31-12-2024 |
Total budget - Public funding: | 1 499 728,00 Euro - 1 499 728,00 Euro |
Cordis data
Original description
Circalunar clocks are endogenous biological clocks, which allow organisms to time development and reproduction to lunar phase. They are common in marine organisms, but their molecular basis is still entirely unknown. Candidate gene approaches have failed so far. In the marine midge Clunio marinus (Diptera: Chironomidae), I can elegantly overcome this problem by exploiting an array of local genetic adaptations in circalunar timing. Through evolutionary analysis, QTL mapping and genome screens my group currently produces evidence-based circalunar candidate genes without any need for prior knowledge or assumptions.In this ERC proposal, I aim to take this work to the next level and identify the molecular and cellular basis of circalunar clocks. I will establish molecular tools for Clunio and use them to confirm and characterize circalunar clock candidate genes. Specifically, I aim to: (WP1) Establish genome editing and confirm candidate genes via knockout and allelic replacement. (WP2) Study gene expression modules across the lunar cycle and identify the transcriptional regulators that exert circalunar control on development and maturation. (WP3) Describe Clunio’s larval nervous system and trace circalunar clock sensory input pathways to their convergence point. This will identify the cellular substrate of the circalunar clock. (WP4) Settle the on-going debate on the role of circadian clocks in circalunar timing. I will particularly study the role of the famous period gene.
In the future, this molecular endeavour will also boost evolutionary work: Clunio will provide insights into fundamental questions, such as the role of genome architecture in local adaptation. But immediately, unravelling the molecular basis of circalunar clocks will be a breakthrough in chronobiology. It will inspire new ideas and experiments. Comparing circalunar to circadian clocks, we will for the first time be able to see basic principles in the molecular design of biological clocks.
Status
SIGNEDCall topic
ERC-2018-STGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)