STUOD | Stochastic Transport in Upper Ocean Dynamics

Summary
71% of Earth is covered by ocean. The ocean has absorbed 93% of the heat trapped by human’s greenhouse gas emissions. The ocean’s future responses to continued warming are uncertain. Our project will deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. Our approach accounts for transport on scales that are currently unresolvable in computer simulations, yet are observable by satellites, drifters and floats. Four scientific capabilities will be engaged: (i) observations at high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; (ii) large scale numerical simulations; (iii) data-based stochastic equations for upper ocean dynamics that quantify simulation error; and (iv) stochastic data assimilation to reduce uncertainty. These four scientific capabilities will tackle a network of joint tasks achieved through cooperation of three world-calibre institutions: IFREMER (ocean observations, reanalysis); INRIA (computational science); and Imperial College (mathematics, data assimilation). Our complementary skill sets comprise a single systemic effort: (1) Coordinate and interpret high-resolution satellite and in situ upper ocean observations (2) Extract correlations from data needed for the mathematical model (3) Perform an ensemble of computer simulations using our new stochastic partial differential equations (SPDE) which are derived by matching the observed statistical properties (4) Apply advanced data assimilation and computer simulations to reduce model uncertainty The key to achieving these goals will be synergy in our combined expertise.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/856408
Start date: 01-03-2020
End date: 28-02-2026
Total budget - Public funding: 9 998 875,00 Euro - 9 998 875,00 Euro
Cordis data

Original description

71% of Earth is covered by ocean. The ocean has absorbed 93% of the heat trapped by human’s greenhouse gas emissions. The ocean’s future responses to continued warming are uncertain. Our project will deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. Our approach accounts for transport on scales that are currently unresolvable in computer simulations, yet are observable by satellites, drifters and floats. Four scientific capabilities will be engaged: (i) observations at high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; (ii) large scale numerical simulations; (iii) data-based stochastic equations for upper ocean dynamics that quantify simulation error; and (iv) stochastic data assimilation to reduce uncertainty. These four scientific capabilities will tackle a network of joint tasks achieved through cooperation of three world-calibre institutions: IFREMER (ocean observations, reanalysis); INRIA (computational science); and Imperial College (mathematics, data assimilation). Our complementary skill sets comprise a single systemic effort: (1) Coordinate and interpret high-resolution satellite and in situ upper ocean observations (2) Extract correlations from data needed for the mathematical model (3) Perform an ensemble of computer simulations using our new stochastic partial differential equations (SPDE) which are derived by matching the observed statistical properties (4) Apply advanced data assimilation and computer simulations to reduce model uncertainty The key to achieving these goals will be synergy in our combined expertise.

Status

SIGNED

Call topic

ERC-2019-SyG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-SyG