BIOSPACE | Monitoring Biodiversity from Space

Summary
Life, with all its diversity, is in crisis. As humans increasingly encroach on biologically complex semi- natural landscapes, no organism, place or ecological function remains unaffected. While all 196 parties (195 countries plus the European Union) to the UN Convention on Biodiversity (CBD) have agreed to monitor the state of biodiversity, the currently available methods to do so leave much to be desired. Traditional monitoring involves the field observation of species by trained specialists, aided by skilled volunteers, whose expertise is restricted to specific biotic groupings. In a process that is both time consuming and inconsistent across time and space, botanists identify and record the presence of plant species and ornithologists the bird biota, resulting in 'unpopular' biotic groups such as fungi, bacteria and insects being under-observed or escaping identification altogether. In this project, a fundamentally different approach to terrestrial biodiversity monitoring couples next generation satellite remote sensing with environmental DNA (eDNA) profiling, complemented where available by legacy human-observed datasets. Satellite remote sensing is able to survey the environment as a single, continuous, fine-resolution map, while eDNA profiling can rapidly quantify much greater taxonomical and functional breadth and depth than human field observation. This project combines, for the first time, these two powerful, cutting-edge techniques for monitoring biodiversity at the global level in a consistent manner. Following from this, another key innovation will be the deepening of our scientific understanding of how biodiversity is impacted by anthropogenic pressure as well as by natural environmental gradients. In concert, these scientific developments will enable the accurate and fine grain monitoring of biodiversity from space – a ground-breaking contribution to the quest to meet the UN Sustainable Development Goals and CBD Aichi targets.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/834709
Start date: 01-09-2019
End date: 31-08-2024
Total budget - Public funding: 2 470 315,00 Euro - 2 470 315,00 Euro
Cordis data

Original description

Life, with all its diversity, is in crisis. As humans increasingly encroach on biologically complex semi- natural landscapes, no organism, place or ecological function remains unaffected. While all 196 parties (195 countries plus the European Union) to the UN Convention on Biodiversity (CBD) have agreed to monitor the state of biodiversity, the currently available methods to do so leave much to be desired. Traditional monitoring involves the field observation of species by trained specialists, aided by skilled volunteers, whose expertise is restricted to specific biotic groupings. In a process that is both time consuming and inconsistent across time and space, botanists identify and record the presence of plant species and ornithologists the bird biota, resulting in 'unpopular' biotic groups such as fungi, bacteria and insects being under-observed or escaping identification altogether. In this project, a fundamentally different approach to terrestrial biodiversity monitoring couples next generation satellite remote sensing with environmental DNA (eDNA) profiling, complemented where available by legacy human-observed datasets. Satellite remote sensing is able to survey the environment as a single, continuous, fine-resolution map, while eDNA profiling can rapidly quantify much greater taxonomical and functional breadth and depth than human field observation. This project combines, for the first time, these two powerful, cutting-edge techniques for monitoring biodiversity at the global level in a consistent manner. Following from this, another key innovation will be the deepening of our scientific understanding of how biodiversity is impacted by anthropogenic pressure as well as by natural environmental gradients. In concert, these scientific developments will enable the accurate and fine grain monitoring of biodiversity from space – a ground-breaking contribution to the quest to meet the UN Sustainable Development Goals and CBD Aichi targets.

Status

SIGNED

Call topic

ERC-2018-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-ADG