EYESPOT | The Genetic, Cellular, and Photonic Mechanisms of Avian Structural Colouration

Summary
Structural colouration is widespread in nature and generates some of the most stunning visual effects known (e.g. eyespots in a peacock tail). In bird feathers, structural colours are produced by the combination of pigments and precise arrangements of nanostructures that interact both chemically and physically. Currently, almost all published studies on structural colour have focused on the optical and physical aspects of this phenomenon, while the underlying molecular mechanisms remain almost totally unexplored. This proposal seeks to decipher the genetic and cellular basis of structural colours by: 1) exploiting the extraordinary diversity of peacock colour mutants that have emerged from captive breeding, and 2) investigating wild bird species that exhibit structural colouration. My proposal is divided across four multidisciplinary aims that integrate techniques and expertise in the fields of genetics and genomics, cell and molecular biology, and photonics. Aim 1 will elucidate the nanoarchitectural basis of aberrant feather colouration in multiple Mendelian peacock mutants by combining microscopy, spectrophotometry, and chemical analysis of pigment content. Aim 2 will theoretically and experimentally model how abnormalities in the architecture of the photonic lattice result in aberrant light-scattering in these mutants. Aim 3 will combine genetic mapping together with molecular and functional genomic tools for experimental validation and identification of genes controlling the peacock colour phenotypes. Aim 4 will refine our understanding of the evolution of this trait in nature by combining transcriptomic and epigenomic data generated from wild bird species with comparative genomics across the entire avian phylogeny using publicly available genomes. Overall, these studies will significantly expand our understanding of the mechanics and molecular changes underlying a spectacular trait that constitutes a major component of bird phenotypic diversity.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101000504
Start date: 01-10-2021
End date: 30-09-2026
Total budget - Public funding: 1 998 165,00 Euro - 1 998 165,00 Euro
Cordis data

Original description

Structural colouration is widespread in nature and generates some of the most stunning visual effects known (e.g. eyespots in a peacock tail). In bird feathers, structural colours are produced by the combination of pigments and precise arrangements of nanostructures that interact both chemically and physically. Currently, almost all published studies on structural colour have focused on the optical and physical aspects of this phenomenon, while the underlying molecular mechanisms remain almost totally unexplored. This proposal seeks to decipher the genetic and cellular basis of structural colours by: 1) exploiting the extraordinary diversity of peacock colour mutants that have emerged from captive breeding, and 2) investigating wild bird species that exhibit structural colouration. My proposal is divided across four multidisciplinary aims that integrate techniques and expertise in the fields of genetics and genomics, cell and molecular biology, and photonics. Aim 1 will elucidate the nanoarchitectural basis of aberrant feather colouration in multiple Mendelian peacock mutants by combining microscopy, spectrophotometry, and chemical analysis of pigment content. Aim 2 will theoretically and experimentally model how abnormalities in the architecture of the photonic lattice result in aberrant light-scattering in these mutants. Aim 3 will combine genetic mapping together with molecular and functional genomic tools for experimental validation and identification of genes controlling the peacock colour phenotypes. Aim 4 will refine our understanding of the evolution of this trait in nature by combining transcriptomic and epigenomic data generated from wild bird species with comparative genomics across the entire avian phylogeny using publicly available genomes. Overall, these studies will significantly expand our understanding of the mechanics and molecular changes underlying a spectacular trait that constitutes a major component of bird phenotypic diversity.

Status

SIGNED

Call topic

ERC-2020-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-COG ERC CONSOLIDATOR GRANTS