YEAST-TRANS | Deciphering the transport mechanisms of small xenobiotic molecules in synthetic yeast cell factories

Summary
Industrial biotechnology employs synthetic cell factories to create bulk and fine chemicals and fuels from renewable resources, laying the basis for the future bio-based economy. The major part of the wanted bio-based chemicals are not native to the host cell, such as yeast, i.e. they are xenobiotic. Some xenobiotic compounds are readily secreted by synthetic cells, some are poorly secreted and some are not secreted at all, but how does this transport occur? Or why does it not occur? These fundamental questions remain to be answered and this will have great implications on industrial biotechnology, because improved secretion would bring down the production costs and enable the emergence of novel bio-based products.
YEAST-TRANS will fill in this knowledge gap by carrying out the first systematic genome-scale transporter study to uncover the transport mechanisms of small xenobiotic molecules by synthetic yeast cells and to apply this knowledge for engineering more efficient cell factories for bio-based production of fuels and chemicals.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/757384
Start date: 01-12-2017
End date: 30-11-2022
Total budget - Public funding: 1 423 357,50 Euro - 1 423 357,00 Euro
Cordis data

Original description

Industrial biotechnology employs synthetic cell factories to create bulk and fine chemicals and fuels from renewable resources, laying the basis for the future bio-based economy. The major part of the wanted bio-based chemicals are not native to the host cell, such as yeast, i.e. they are xenobiotic. Some xenobiotic compounds are readily secreted by synthetic cells, some are poorly secreted and some are not secreted at all, but how does this transport occur? Or why does it not occur? These fundamental questions remain to be answered and this will have great implications on industrial biotechnology, because improved secretion would bring down the production costs and enable the emergence of novel bio-based products.
YEAST-TRANS will fill in this knowledge gap by carrying out the first systematic genome-scale transporter study to uncover the transport mechanisms of small xenobiotic molecules by synthetic yeast cells and to apply this knowledge for engineering more efficient cell factories for bio-based production of fuels and chemicals.

Status

CLOSED

Call topic

ERC-2017-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2017
ERC-2017-STG